
Model Predictive Control Toolbox™
User's Guide

Alberto Bemporad
N. Lawrence Ricker
Manfred Morari

R2021b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Model Predictive Control Toolbox™ User's Guide
© COPYRIGHT 2005–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
October 2004 First printing New for Version 2.1 (Release 14SP1)
March 2005 Online only Revised for Version 2.2 (Release 14SP2)
September 2005 Online only Revised for Version 2.2.1 (Release 14SP3)
March 2006 Online only Revised for Version 2.2.2 (Release 2006a)
September 2006 Online only Revised for Version 2.2.3 (Release 2006b)
March 2007 Online only Revised for Version 2.2.4 (Release 2007a)
September 2007 Online only Revised for Version 2.3 (Release 2007b)
March 2008 Online only Revised for Version 2.3.1 (Release 2008a)
October 2008 Online only Revised for Version 3.0 (Release 2008b)
March 2009 Online only Revised for Version 3.1 (Release 2009a)
September 2009 Online only Revised for Version 3.1.1 (Release 2009b)
March 2010 Online only Revised for Version 3.2 (Release 2010a)
September 2010 Online only Revised for Version 3.2.1 (Release 2010b)
April 2011 Online only Revised for Version 3.3 (Release 2011a)
September 2011 Online only Revised for Version 4.0 (Release 2011b)
March 2012 Online only Revised for Version 4.1 (Release 2012a)
September 2012 Online only Revised for Version 4.1.1 (Release 2012b)
March 2013 Online only Revised for Version 4.1.2 (Release R2013a)
September 2013 Online only Revised for Version 4.1.3 (Release R2013b)
March 2014 Online only Revised for Version 4.2 (Release R2014a)
October 2014 Online only Revised for Version 5.0 (Release R2014b)
March 2015 Online only Revised for Version 5.0.1 (Release 2015a)
September 2015 Online only Revised for Version 5.1 (Release 2015b)
March 2016 Online only Revised for Version 5.2 (Release 2016a)
September 2016 Online only Revised for Version 5.2.1 (Release 2016b)
March 2017 Online only Revised for Version 5.2.2 (Release 2017a)
September 2017 Online only Revised for Version 6.0 (Release 2017b)
March 2018 Online only Revised for Version 6.1 (Release 2018a)
September 2018 Online only Revised for Version 6.2 (Release 2018b)
March 2019 Online only Revised for Version 6.3 (Release 2019a)
September 2019 Online only Revised for Version 6.3.1 (Release 2019b)
March 2020 Online only Revised for Version 6.4 (Release 2020a)
September 2020 Online only Revised for Version 7.0 (Release 2020b)
March 2021 Online only Revised for Version 7.1 (Release 2021a)
September 2021 Online only Revised for Version 7.2 (Release 2021b)

Controller Creation
1

Choose Sample Time and Horizons . 1-2
Sample Time . 1-2
Prediction Horizon . 1-2
Control Horizon . 1-3
Defining Sample Time and Horizons . 1-3

Specify Constraints . 1-5
Input and Output Constraints . 1-5
Constraint Softening . 1-7

DC Servomotor with Constraint on Unmeasured Output 1-10

Discrete Control Set MPC . 1-15

Solve a Discrete Set MPC Problem in MATLAB . 1-16

Solve a Discrete Set MPC Problem in Simulink . 1-21

Surge Tank Control Using Discrete Control Set MPC 1-24

Specify Scale Factors . 1-29
Determine Scale Factors . 1-29
Specify Scale Factors at Command Line . 1-29
Specify Scale Factors Using MPC Designer . 1-30

Using Scale Factors to Facilitate MPC Weights Tuning 1-32

Tune Weights . 1-43
Initial Tuning . 1-43
Testing and Refinement . 1-44
Robustness . 1-45

Design Model Predictive Controller at Equilibrium Operating Point . . . 1-47

Design MPC Controller for Plant with Delays . 1-52

Design MPC Controller for Nonsquare Plants . 1-59
More Outputs Than Manipulated Variables . 1-59
More Manipulated Variables Than Outputs . 1-61

Design MPC Controller for Identified Plant Model 1-64
Design Controller for Identified Plant Using Apps 1-64
Design Controller for Identified Plant at the Command Line 1-79

v

Contents

Configure Noise Channels as Unmeasured Disturbances 1-84

Generate MATLAB Code from MPC Designer . 1-89

Design MPC Controller for Position Servomechanism 1-91

Design MPC Controller for Paper Machine Process 1-110

Control of an Inverted Pendulum on a Cart . 1-132

Thermo-Mechanical Pulping Process with Multiple Control Objectives
. 1-140

MPC Control of an Aircraft with Unstable Poles 1-148

Model Predictive Control Basics
2

Controller State Estimation . 2-2
Controller State Variables . 2-2
State Observer . 2-3
State Estimation . 2-3
Built-in Steady-State Kalman Gains Calculation . 2-4
Output Variable Prediction . 2-5

Optimization Problem . 2-7
Overview . 2-7
Standard Cost Function . 2-7
Alternative Cost Function . 2-9
Constraints . 2-10
QP Matrices . 2-11
Unconstrained Model Predictive Control . 2-15

QP Solvers . 2-17
Built-In QP Solvers . 2-17
Custom QP Solver . 2-19
Use quadprog as Custom QP Solver . 2-22
Integration with FORCESPRO Solver . 2-23

Controller Refinement
3

Setting Targets for Manipulated Variables . 3-2

Constraints on Linear Combinations of Inputs and Outputs 3-5

Use Custom Constraints in Blending Process . 3-9

Terminal Weights and Constraints . 3-18

vi Contents

Provide LQR Performance Using Terminal Penalty Weights 3-20

Adjust Disturbance and Noise Models . 3-25
Overview . 3-25
Output Disturbance Model . 3-25
Measurement Noise Model . 3-27
Input Disturbance Model . 3-28
Restrictions . 3-30
Disturbance Rejection Tuning . 3-30

Custom State Estimation . 3-32

Implement Custom State Estimator Equivalent to Built-In Kalman Filter
. 3-37

Manipulated Variable Blocking . 3-44
Specify Blocking Interval Lengths . 3-44
Interpolate Block Moves for Nonlinear MPC . 3-46

Specifying Alternative Cost Function with Off-Diagonal Weight Matrices
. 3-48

Controller Analysis
4

Review Model Predictive Controller for Stability and Robustness Issues
. 4-2

Compute Steady-State Gain . 4-17

Extract Controller . 4-20

Compare Multiple Controller Responses Using MPC Designer 4-22

Adjust Input and Output Weights Based on Sensitivity Analysis 4-31

Understanding Control Behavior by Examining Optimal Control Sequence
. 4-37

Controller Simulation
5

Simulating MPC Controller with Plant Model Mismatch 5-2

Test MPC Controller Robustness using MPC Designer 5-5

Generate Simulink Model from MPC Designer . 5-14

vii

Test an Existing MPC Controller with Simulink . 5-16

Signal Previewing . 5-19

Improving Control Performance with Look-Ahead (Previewing) 5-20

Update Constraints at Run Time . 5-27
Update Bounds on Input and Output Signals at Run Time 5-27
Update Mixed Input/Output Constraints at Run Time 5-28

Vary Input and Output Bounds at Run Time . 5-30

Tune Weights at Run Time . 5-35

Tuning MPC Controller Weights at Run-Time . 5-36

Setting Time-Varying Weights and Constraints with MPC Designer 5-42
Time-Varying Weights . 5-42
Time-Varying Constraints . 5-43

Adjust Horizons at Run Time . 5-45
Adjust Horizons in MATLAB . 5-45
Adjust Horizons in Simulink . 5-45
Code Generation . 5-45
Effect on Time-Varying Controller Parameters and Signals 5-46

Evaluate Control Performance Using Run-Time Horizon Adjustment . . . 5-48

Switch Controller Online and Offline with Bumpless Transfer 5-57

Switching Controllers Based on Optimal Costs . 5-67

Monitoring Optimization Status to Detect Controller Failures 5-73

Simulate MPC Controller with a Custom QP Solver 5-77

Use Suboptimal Solution in Fast MPC Applications 5-86

Design and Cosimulate Control of High-Fidelity Distillation Tower with
Aspen Plus Dynamics . 5-93

Simulate Linear MPC Controller with Nonlinear Plant using Successive
Linearizations . 5-111

Nonlinear CSTR Application . 5-111
Example Code for Successive Linearization . 5-111
CSTR Results and Discussion . 5-113

Explicit MPC Design
6

Explicit MPC . 6-2

viii Contents

Design Workflow for Explicit MPC . 6-4
Traditional (Implicit) MPC Design . 6-4
Explicit MPC Generation . 6-4
Explicit MPC Simplification . 6-5
Implementation . 6-5
Simulation . 6-6

Explicit MPC Control of a Single-Input-Single-Output Plant 6-7

Explicit MPC Control of an Aircraft with Unstable Poles 6-17

Explicit MPC Control of DC Servomotor with Constraint on Unmeasured
Output . 6-24

Explicit MPC Control of an Inverted Pendulum on a Cart 6-33

Adaptive MPC Design
7

Adaptive MPC . 7-2
When to Use Adaptive MPC . 7-2
Plant Model . 7-2
Nominal Operating Point . 7-3
State Estimation . 7-3

Model Updating Strategy . 7-5
Overview . 7-5
Other Considerations . 7-5

Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive
Linearization . 7-7

Adaptive MPC Control of Nonlinear Chemical Reactor Using Online
Model Estimation . 7-17

Adaptive MPC Control of Nonlinear Chemical Reactor Using Linear
Parameter-Varying System . 7-27

Obstacle Avoidance Using Adaptive Model Predictive Control 7-38

Time-Varying MPC . 7-49
When to Use Time-Varying MPC . 7-49
Time-Varying Prediction Models . 7-49
Time-Varying Nominal Conditions . 7-50
State Estimation . 7-51

Time-Varying MPC Control of a Time-Varying Plant 7-52

Time-Varying MPC Control of an Inverted Pendulum on a Cart 7-58

ix

Gain Scheduling MPC Design
8

Gain-Scheduled MPC . 8-2
Design Workflow . 8-2

Schedule Controllers at Multiple Operating Points 8-4

Gain-Scheduled MPC Control of Nonlinear Chemical Reactor 8-22

Gain-Scheduled Implicit and Explicit MPC Control of Mass-Spring System
. 8-42

Gain-Scheduled MPC Control of an Inverted Pendulum on a Cart 8-58

Nonlinear MPC
9

Nonlinear MPC . 9-2
Generic Nonlinear MPC . 9-2
Multistage Nonlinear MPC . 9-2

Specify Prediction Model for Nonlinear MPC . 9-5
State Function . 9-5
Output Function . 9-8
Specify Optional Model Parameters . 9-10
Augment Prediction Model with Unmeasured Disturbances 9-10

Specify Cost Function for Nonlinear MPC . 9-12
Custom Cost Function . 9-12
Cost Function Jacobian . 9-16

Specify Constraints for Nonlinear MPC . 9-19
Standard Linear Constraints . 9-19
Custom Constraints . 9-20
Custom Constraint Jacobians . 9-24

Configure Optimization Solver for Nonlinear MPC 9-27
Solver Decision Variables . 9-27
Specify Initial Guesses . 9-27
Configure fmincon Options . 9-27
Specify Custom Solver . 9-28

Trajectory Optimization and Control of Flying Robot Using Nonlinear
MPC . 9-32

Generate Code to Plan and Execute Collision-Free Trajectories using
KINOVA Gen3 Manipulator . 9-43

Swing-up Control of a Pendulum Using Nonlinear Model Predictive
Control . 9-49

x Contents

Nonlinear Model Predictive Control of an Exothermic Chemical Reactor
. 9-61

Optimizing Tuberculosis Treatment Using Nonlinear MPC with a Custom
Solver . 9-68

Nonlinear and Gain-Scheduled MPC Control of an Ethylene Oxidation
Plant . 9-76

Optimization and Control of a Fed-Batch Reactor Using Nonlinear MPC
. 9-84

Lane Following Using Nonlinear Model Predictive Control 9-94

Lane Change Assist Using Nonlinear Model Predictive Control 9-101

Control of Quadrotor Using Nonlinear Model Predictive Control 9-111

Economic MPC . 9-117

Economic MPC Control of Ethylene Oxide Production 9-119

Truck and Trailer Automatic Parking Using Multistage Nonlinear MPC
. 9-127

Land a Rocket Using Multistage Nonlinear MPC 9-141

Code Generation
10

Generate Code and Deploy Controller to Real-Time Targets 10-2
Code Generation in MATLAB . 10-2
Code Generation in Simulink . 10-2
Generate CUDA Code for Linear MPC Controllers 10-3
Sampling Rate in Real-Time Environment . 10-4
QP Problem Construction for Generated C Code 10-4
Code Generation for Custom QP Solvers . 10-6

Generate Code to Compute Optimal MPC Moves in MATLAB 10-7

Simulation and Code Generation Using Simulink Coder 10-13

Simulation and Structured Text Generation Using Simulink PLC Coder
. 10-20

Use the GPU to Compute MPC Moves in MATLAB 10-25

Use the GPU to Simulate an MPC Controller in Simulink 10-31

Using MPC Controller Block Inside Function-Call and Triggered
Subsystems . 10-34

xi

Solve Custom MPC Quadratic Programming Problem and Generate Code
. 10-46

Simulate and Generate Code for MPC Controller with Custom QP Solver
. 10-56

Real-Time Control with OPC Toolbox . 10-63

Implement MPC Controllers using Embotech FORCESPRO Solvers . . . 10-67
Embotech Quadratic Programming (QP) Solver 10-67
Embotech Nonlinear Programming (NLP) Solver 10-68

Automated Driving Applications
11

Automated Driving Using Model Predictive Control 11-2
Simulation in Simulink . 11-3
Controller Customization . 11-3
Integration with Automated Driving Toolbox . 11-4

Adaptive Cruise Control System Using Model Predictive Control 11-5

Adaptive Cruise Control with Sensor Fusion . 11-10

Lane Keeping Assist System Using Model Predictive Control 11-28

Lane Keeping Assist with Lane Detection . 11-33

Lane Following Control with Sensor Fusion and Lane Detection 11-51

Highway Lane Following . 11-62

Highway Lane Change . 11-78

Automate Testing for Highway Lane Following . 11-89

Highway Lane Following with Intelligent Vehicles 11-99

Parking Valet Using Nonlinear Model Predictive Control 11-117

Parallel Parking Using Nonlinear Model Predictive Control 11-126

Parallel Parking Using RRT Planner and MPC Tracking Controller . . 11-139

Traffic Light Negotiation . 11-148

Traffic Light Negotiation with Unreal Engine Visualization 11-162

xii Contents

Controller Creation

• “Choose Sample Time and Horizons” on page 1-2
• “Specify Constraints” on page 1-5
• “DC Servomotor with Constraint on Unmeasured Output” on page 1-10
• “Discrete Control Set MPC” on page 1-15
• “Solve a Discrete Set MPC Problem in MATLAB ” on page 1-16
• “Solve a Discrete Set MPC Problem in Simulink” on page 1-21
• “Surge Tank Control Using Discrete Control Set MPC” on page 1-24
• “Specify Scale Factors” on page 1-29
• “Using Scale Factors to Facilitate MPC Weights Tuning” on page 1-32
• “Tune Weights” on page 1-43
• “Design Model Predictive Controller at Equilibrium Operating Point” on page 1-47
• “Design MPC Controller for Plant with Delays” on page 1-52
• “Design MPC Controller for Nonsquare Plants” on page 1-59
• “Design MPC Controller for Identified Plant Model” on page 1-64
• “Generate MATLAB Code from MPC Designer” on page 1-89
• “Design MPC Controller for Position Servomechanism” on page 1-91
• “Design MPC Controller for Paper Machine Process” on page 1-110
• “Control of an Inverted Pendulum on a Cart” on page 1-132
• “Thermo-Mechanical Pulping Process with Multiple Control Objectives” on page 1-140
• “MPC Control of an Aircraft with Unstable Poles” on page 1-148

1

Choose Sample Time and Horizons
Sample Time
Duration

Recommended practice is to choose the control interval duration (controller property Ts) initially, and
then hold it constant as you tune other controller parameters. If it becomes obvious that the original
choice was poor, you can revise Ts. If you do so, you might then need to retune other settings.

Qualitatively, as Ts decreases, rejection of unknown disturbance usually improves and then plateaus.
The Ts value at which performance plateaus depends on the plant dynamic characteristics.

However, as Ts becomes small, the computational effort increases dramatically. Thus, the optimal
choice is a balance of performance and computational effort.

In Model Predictive Control, the prediction horizon, p is also an important consideration. If one
chooses to hold the prediction horizon duration (the product p*Ts) constant, p must vary inversely
with Ts. Many array sizes are proportional to p. Thus, as p increases, the controller memory
requirements and QP solution time increase.

Consider the following when choosing Ts:

• As a rough guideline, set Ts between 10% and 25% of your minimum desired closed-loop response
time.

• Run at least one simulation to see whether unmeasured disturbance rejection improves
significantly when Ts is halved. If so, consider revising Ts.

• For process control, Ts >> 1 s is common, especially when MPC supervises lower-level single-loop
controllers. Other applications, such as automotive or aerospace, can require Ts < 1 s. If the time
needed for solving the QP in real time exceeds the desired control interval, consider the Explicit
MPC on page 6-2 option.

• For plants with delays, the number of state variables needed for modeling delays is inversely
proportional to Ts.

• For open-loop unstable plants, if p*Ts is too large, such that the plant step responses become
infinite during this amount of time, key parameters needed for MPC calculations become
undefined, generating an error message.

Units

The controller inherits its time unit from the plant model. Specifically, the controller uses the
TimeUnit property of the plant model LTI object. This property defaults to seconds.

Prediction Horizon
Suppose that the current control interval is k. The prediction horizon, p, is the number of future
control intervals the MPC controller must evaluate by prediction when optimizing its MVs at control
interval k.

Tips

• Recommended practice is to choose p early in the controller design and then hold it constant
while tuning other controller settings, such as the cost function weights. In other words, do not

1 Controller Creation

1-2

use p adjustments for controller tuning. Rather, the value of p should be such that the controller is
internally stable and anticipates constraint violations early enough to allow corrective action.

• If the desired closed-loop response time is T and the control interval is Ts, try p such that T ≈ pTs.
• Plant delays impose a lower bound on the possible closed-loop response times. Choose p

accordingly. To check for a violation of this condition, use the review command.
• Recommended practice is to increase p until further increases have a minor impact on

performance. If the plant is open-loop unstable, the maximum p is the number of control intervals
required for the open-loop step response of the plant to become infinite. p > 50 is rarely necessary
unless Ts is too small.

• Unfavorable plant characteristics combined with a small p can generate an internally unstable
controller. To check for this condition, use the review command, and increase p if possible. If p is
already large, consider the following:

• Increase Ts.
• Increase the cost function weights on MV increments.
• Modify the control horizon or use MV blocking (see “Manipulated Variable Blocking” on page

3-44).
• Use a small p with terminal weighting to approximate LQR behavior (See “Terminal Weights

and Constraints” on page 3-18).

Control Horizon
The control horizon, m, is the number of MV moves to be optimized at control interval k. The control
horizon falls between 1 and the prediction horizon p. The default is m = 2. Regardless of your choice
for m, when the controller operates, the optimized MV move at the beginning of the horizon is used
and any others are discarded.

Tips

Reasons to keep m << p are as follows:

• Small m means fewer variables to compute in the QP solved at each control interval, which
promotes faster computations.

• If the plant includes delays, m < p is essential. Otherwise, some MV moves might not affect any of
the plant outputs before the end of the prediction horizon, leading to a singular QP Hessian
matrix. To check for a violation of this condition, use the review command.

• Small m promotes (but does not guarantee) an internally stable controller.

Defining Sample Time and Horizons
You can define the sample time, prediction horizon, and control horizon when creating an mpc
controller at the command line. After creating a controller, mpcObj, you can modify the sample time
and horizons by setting the following controller properties:

• Sample time — mpcObj.Ts
• Prediction horizon — mpcObj.p
• Control horizon — mpcObj.m

 Choose Sample Time and Horizons

1-3

Also, when designing an MPC controller using the MPC Designer app, in the Tuning tab, in the
Horizon section, you can modify the sample time and horizons.

See Also
mpc | MPC Designer

More About
• “Specify Constraints” on page 1-5

1 Controller Creation

1-4

Specify Constraints

Input and Output Constraints
By default, when you create a controller object using the mpc command, no constraints exist. To
include a constraint, set the appropriate controller property. The following table summarizes the
controller properties used to define most MPC constraints. (MV = plant manipulated variable; OV =
plant output variable; MV increment = u(k) – u(k – 1).

Constraint Controller Property Constraint Softening
Lower bound on ith MV MV(i).Min > -Inf MV(i).MinECR > 0
Upper bound on ith MV MV(i).Max < Inf MV(i).MaxECR > 0
Lower bound on ith OV OV(i).Min > -Inf OV(i).MinECR > 0
Upper bound on ith OV OV(i).Max < Inf OV(i).MaxECR > 0
Lower bound on ith MV
increment

MV(i).RateMin > -Inf MV(i).RateMinECR > 0

Upper bound on ith MV
increment

MV(i).RateMax < Inf MV(i).RateMaxECR > 0

To set the controller constraint properties using the MPC Designer app, in the Tuning tab, click

Constraints . In the Constraints dialog box, specify the constraint values.

See “Constraints” on page 2-10 for the equations describing the corresponding constraints.

 Specify Constraints

1-5

Tips

For MV bounds:

• Include known physical limits on the plant MVs as hard MV bounds.
• Include MV increment bounds when there is a known physical limit on the rate of change, or your

application requires you to prevent large increments for some other reason.
• Do not include both hard MV bounds and hard MV increment bounds on the same MV, as they can
conflict. If both types of bounds are important, soften one.

For OV bounds:

• Do not include OV bounds unless they are essential to your application. As an alternative to
setting an OV bound, you can define an OV reference and set its cost function weight to keep the
OV close to its setpoint.

• All OV constraints should be softened.
• Consider leaving the OV unconstrained for some prediction horizon steps. See “Setting Time-

Varying Weights and Constraints with MPC Designer” on page 5-42.
• Consider a time-varying OV constraint that is easy to satisfy early in the horizon, gradually

tapering to a more strict constraint. See “Setting Time-Varying Weights and Constraints with MPC
Designer” on page 5-42.

• Do not include OV constraints that are impossible to satisfy. Even if soft, such constraints can
cause unexpected controller behavior. For example, consider a SISO plant with five sampling
periods of delay. An OV constraint before the sixth prediction horizon step is, in general,
impossible to satisfy. You can use the review command to check for such impossible constraints,

1 Controller Creation

1-6

and use a time-varying OV bound instead. See “Setting Time-Varying Weights and Constraints with
MPC Designer” on page 5-42.

Constraint Softening
Hard constraints are constraints that the quadratic programming (QP) solution must satisfy. If it is
mathematically impossible to satisfy a hard constraint at a given control interval, k, the QP is
infeasible. In this case, the controller returns an error status, and sets the manipulated variables
(MVs) to u(k) = u(k–1), that is, no change. If the condition leading to infeasibility is not resolved,
infeasibility can continue indefinitely, leading to a loss of control.

Disturbances and prediction errors are inevitable in practice. Therefore, a constraint violation could
occur in the plant even though the controller predicts otherwise. A feasible QP solution does not
guarantee that all hard constraints will be satisfied when the optimal MV is used in the plant.

If the only constraints in your application are bounds on MVs, the MV bounds can be hard
constraints, as they are by default. MV bounds alone cannot cause infeasibility. The same is true when
the only constraints are on MV increments.

However, a hard MV bound with a hard MV increment constraint can lead to infeasibility. For
example, an upset or operation under manual control could cause the actual MV used in the plant to
exceed the specified bound during interval k–1. If the controller is in automatic during interval k, it
must return the MV to a value within the hard bound. If the MV exceeds the bound by too much, the
hard increment constraint can make correcting the bound violation in the next interval impossible.

If the plant is subject to disturbances and there are either hard output constraints or hard mixed
input-output constraints, then QP infeasibility is a distinct possibility.

All Model Predictive Control Toolbox constraints (except slack variable nonnegativity) can be soft.
When a constraint is soft, the controller can deem an MV optimal even though it predicts a violation
of that constraint. If all plant output, MV increment, and custom constraints are soft (as they are by
default), QP infeasibility does not occur. However, controller performance can be substandard.

To soften a constraint, set the corresponding equal concern for relaxation (ECR) value to a positive
value (zero implies a hard constraint). The larger the ECR value, the more likely the controller will
deem it optimal to violate the constraint in order to satisfy your other performance goals. The Model
Predictive Control Toolbox software provides default ECR values but, as for the cost function weights,
you might need to tune the ECR values in order to achieve acceptable performance.

To understand how constraint softening works, suppose that your cost function uses wi, j
u = wi, j

Δu = 0,
giving both the MV and MV increments zero weight in the cost function. Only the output reference
tracking and constraint violation terms are nonzero. In this case, the cost function is:

J(zk) =∑ j = 1

ny ∑i = 1

p wi, j
y

s j
y r j k + i |k − y j k + i |k

2

+ ρεεk
2 .

Suppose that you have also specified hard MV bounds with V j, min
u i = 0 and V j, max

u (i) = 0. Then these
constraints simplify to:

uj, min i

s j
u ≤

uj k + i− 1 |k

s j
u ≤

uj, max i

s j
u , i = 1:p, j = 1:nu .

 Specify Constraints

1-7

Thus, the slack variable, εk, no longer appears in the above equations. You have also specified soft
constraints on plant outputs with V j, min

y i > 0 and V j, max
y (i) > 0.

y j, min i

s j
y − εkV j, min

y i ≤
y j k + i |k

s j
y ≤

y j, max i

s j
y + εkV j, max

y i , i = 1:p, j = 1:ny .

Now, suppose that a disturbance has pushed a plant output above its specified upper bound, but the
QP with hard output constraints would be feasible, that is, all constraint violations could be avoided
in the QP solution. The QP involves a trade-off between output reference tracking and constraint
violation. The slack variable, εk, must be nonnegative. Its appearance in the cost function
discourages, but does not prevent, an optimal εk > 0. A larger ρε weight, however, increases the
likelihood that the optimal εk will be small or zero.

If the optimal εk > 0, at least one of the bound inequalities must be active (at equality). A relatively
large V j, max

y (i) makes it easier to satisfy the constraint with a small εk. In that case,

y j k + i |k

s j
y

can be larger, without exceeding

y j, max i

s j
y + εkV j, max

y (i) .

Notice that V j, max
y (i) does not set an upper limit on the constraint violation. Rather, it is a tuning

factor determining whether a soft constraint is easy or difficult to satisfy.

Tips

• Use of dimensionless variables simplifies constraint tuning. Define appropriate scale factors for
each plant input and output variable. See “Specify Scale Factors” on page 1-29.

• To indicate the relative magnitude of a tolerable violation, use the ECR parameter associated with
each constraint. Rough guidelines are as follows:

• 0 — No violation allowed (hard constraint)
• 0.05 — Very small violation allowed (nearly hard)
• 0.2 — Small violation allowed (quite hard)
• 1 — average softness
• 5 — greater-than-average violation allowed (quite soft)
• 20 — large violation allowed (very soft)

• Use the overall constraint softening parameter of the controller (controller object property:
Weights.ECR) to penalize a tolerable soft constraint violation relative to the other cost function
terms. Set the Weights.ECR property such that the corresponding penalty is 1–2 orders of
magnitude greater than the typical sum of the other three cost function terms. If constraint
violations seem too large during simulation tests, try increasing Weights.ECR by a factor of 2–5.

Be aware, however, that an excessively large Weights.ECR distorts MV optimization, leading to
inappropriate MV adjustments when constraint violations occur. To check for this, display the cost

1 Controller Creation

1-8

function value during simulations. If its magnitude increases by more than 2 orders of magnitude
when a constraint violation occurs, consider decreasing Weights.ECR.

• Disturbances and prediction errors can lead to unexpected constraint violations in a real system.
Attempting to prevent these violations by making constraints harder often degrades controller
performance.

See Also
review

More About
• “Setting Time-Varying Weights and Constraints with MPC Designer” on page 5-42
• “Terminal Weights and Constraints” on page 3-18
• “Optimization Problem” on page 2-7
• “DC Servomotor with Constraint on Unmeasured Output” on page 1-10

 Specify Constraints

1-9

DC Servomotor with Constraint on Unmeasured Output
This example shows how to design a model predictive controller for a DC servomechanism under
voltage and shaft torque constraints.

For a similar example that uses explicit MPC, see “Explicit MPC Control of DC Servomotor with
Constraint on Unmeasured Output” on page 6-24.

Define DC-Servo Motor Model

The mpcmotormodel function returns the plant model needed for the example. The linear open-loop
dynamic model is defined in plant. The variable tau is the maximum admissible torque, this is going
to be used as an output constraint.

[plant,tau] = mpcmotormodel;

The plant control input is the DC voltage, the four state variables are the angular position and
velocities of the load and shaft. The measurable output is the angular position of the load. The second
output, torque, is not measurable. Specify input and output signal types for the MPC controller.

plant = setmpcsignals(plant,'MV',1,'MO',1,'UO',2);

Specify MV Constraints

The manipulated variable is constrained between +/- 220 volts. Since the plant inputs and outputs are
of different orders of magnitude, you also use scale factors to facilitate MPC tuning. Typical choices
of scale factor are the upper/lower limit or the operating range.

MV = struct('Min',-220,'Max',220,'ScaleFactor',440);

Specify OV Constraints

Torque constraints of +|tau| and -|tau| are only imposed during the first three prediction steps.

OV = struct('Min',{-Inf, [-tau;-tau;-tau;-Inf]},...
 'Max',{Inf, [tau;tau;tau;Inf]},...
 'ScaleFactor',{2*pi, 2*tau});

Specify Tuning Weights

The control task is to get zero tracking offset for the angular position. Since you only have one
manipulated variable, the shaft torque is allowed to float within its constraint by setting its weight to
zero.

Weights = struct('MV',0,'MVRate',0.1,'OV',[0.1 0]);

Create MPC controller

Create an MPC controller with sample time Ts, prediction horizon p, and control horizon m.

Ts = 0.1;
p = 10;
m = 2;
mpcobj = mpc(plant,Ts,p,m,Weights,MV,OV);

Simulate Controller Using sim Function

Use the sim function to simulate the closed-loop control of the linear plant model in MATLAB.

1 Controller Creation

1-10

disp('Now simulating nominal closed-loop behavior');
Tstop = 8; % seconds
Tf = round(Tstop/Ts); % simulation iterations
r = [pi*ones(Tf,1) zeros(Tf,1)];% reference signal
[y1,t1,u1] = sim(mpcobj,Tf,r);

Now simulating nominal closed-loop behavior
-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Plot results.

subplot(3,1,1)
stairs(t1,y1(:,1))
hold on
stairs(t1,r(:,1))
hold off
title('Angular Position')
subplot(3,1,2)
stairs(t1,y1(:,2))
title('Torque')
subplot(3,1,3)
stairs(t1,u1)
title('Voltage')

 DC Servomotor with Constraint on Unmeasured Output

1-11

Simulate Using Simulink

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end

Simulate closed-loop control of the linear plant model in Simulink. The MPC Controller block is
configured to use mpcobj as its controller.

mdl = 'mpc_motor';
open_system(mdl)
sim(mdl)

1 Controller Creation

1-12

 DC Servomotor with Constraint on Unmeasured Output

1-13

The closed-loop response is identical to the simulation result in MATLAB.

References

[1] A. Bemporad and E. Mosca, "Fulfilling hard constraints in uncertain linear systems by reference
managing," Automatica, vol. 34, no. 4, pp. 451-461, 1998.

bdclose(mdl)

See Also

More About
• “Specify Constraints” on page 1-5

1 Controller Creation

1-14

Discrete Control Set MPC
MPC problems with discrete control sets are problems in which some or all manipulated variables
belong to discrete sets. To handle these cases, for a given manipulated variable, specify the Type
field of the corresponding ManipulatedVariables structure in the mpc object:

• 'binary' — Restrict the manipulated variable to be either 0 or 1.
• 'integer' — Restrict the manipulated variable to be an integer.
• Vector containing a discrete set of possible values — Restrict the manipulated variable to the
specified values, for example mpcobj.MV(2).Type=[-1,0,0.5,1,2];.

By default, the type is set to 'continuous', indicating that the manipulated variable is continuous.

You can simulate the discrete control set linear MPC controller in:

• MATLAB® — using sim, mpcmove, mpcmoveAdaptive and mpcmoveMultiple.
• Simulink® — using the MPC Controller, Adaptive MPC Controller, and Multiple MPC Controllers

blocks.

When simulating multiple controllers using mpcmoveMultiple or the Multiple MPC Controllers
block, all candidate controllers must use the same manipulated variable type configuration.

Code generation from a controller with discrete control sets is supported in both MATLAB and
Simulink.

A new built-in mixed-integer quadratic programming (MIQP) solver is used to solve the discrete
control set MPC problem. You can use the new property Optimizer.MixedIntegerOptions of the
mpc object to customize the options for this solver (like for example number of iterations and
constraints tolerance).

See Also

Related Examples
• “Solve a Discrete Set MPC Problem in MATLAB” on page 1-16
• “Solve a Discrete Set MPC Problem in Simulink” on page 1-21
• “Surge Tank Control Using Discrete Control Set MPC” on page 1-24

 Discrete Control Set MPC

1-15

Solve a Discrete Set MPC Problem in MATLAB
This example shows how to solve, in MATLAB, an MPC problem in which some manipulated variables
belong to a discrete set.

Create a Plant Model

Fix the random generator seed for reproducibility.

rng(0);

Create a discrete-time strictly proper plant with 4 states, two inputs and one output.

plant = drss(4,1,2);
plant.D = 0;

Set the sampling time to 0.1s, and increase the control authority of the first input, to better illustrate
its control contribution.

plant.Ts = 0.1;
plant.B(:,1)=plant.B(:,1)*2;

Design the MPC Controller

Create an MPC controller with one second sampling time, 20 steps prediction horizon and 5 steps
control horizon.

mpcobj = mpc(plant,0.1,20,5);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Specify the first manipulated variable as belonging to a discrete set of seven possible values (you
could also specify the type as an integer using the instruction mpcobj.MV(1).Type =
'integer';)

mpcobj.MV(1).Type = [-1 -0.7 -0.3 0 0.2 0.5 1];

Use rate limits to enforce maximum increment and decrement values for the first manipulated
variable.

mpcobj.MV(1).RateMin = -0.5;
mpcobj.MV(1).RateMax = 0.5;

Set limits on the second manipulated variable, whose default type (continuous) has not been changed.

mpcobj.MV(2).Min = -2;
mpcobj.MV(2).Max = 2;

Simulate the Closed Loop Using the sim Command and Plot Results

Set the number of simulation steps.

simsteps = 50;

Create an output reference signal equal to zero from steps 20 to 35 and equal to 0.6 before and
after.

1 Controller Creation

1-16

r = ones(simsteps,1)*0.6;
r(20:35) = 0;

Simulate the closed loop using the sim command. Return the plant input and output signals.

[YY,~,UU,~,~,~,status] = sim(mpcobj,simsteps,r);

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Plot results.

figure(1)

subplot(211) % plant output
plot([YY,r]);
grid
title("Tracking control");

subplot(223) % first plant input
stairs(UU(:,1));
grid
%title("MV(1) discrete set "+ num2str(mpcobj.MV(1).Type','%0.1f '))
title("MV(1) discrete set ")

subplot(224) % second plant input
stairs(UU(:,2));
grid
title("MV(2) continuous between [-2 2]")

 Solve a Discrete Set MPC Problem in MATLAB

1-17

As expected, the first manipulated variable is restricted to the values specified in the discrete set
(with jumps less than the specified limit), while the second one can vary continuously between -2 and
2. The plant output tracks the reference value after a few seconds.

Simulate the Closed Loop Using the mpcmove Command and Plot Results

Get handle to mpcobj state and initialize plant state.

xmpc = mpcstate(mpcobj);
x = xmpc.Plant;

Initialize arrays that store signals.

YY = []; RR = []; UU = []; XX = [];

Perform simulation using the mpcmove command to calculate the control actions.

for k = 1:simsteps
 XX = [XX;x']; % store plant state
 y = plant.C*x; % calculate plant output
 YY = [YY;y]; % store plant output
 RR = [RR;r(k)]; % store reference
 u = mpcmove(mpcobj,xmpc,y,r(k)); % calculate optimal mpc move
 UU = [UU;u']; % store plant input
 x = plant.A*x+plant.B*u; % update plant state
 % is the last line necessary since x=xmpc.Plant gets updated anyway?
end

1 Controller Creation

1-18

Plot results.

figure(2)

subplot(211) % plant output
plot([YY,r]);
grid
title("Tracking control");

subplot(223) % first plant input
stairs(UU(:,1));
grid
title("MV(1) discrete set")

subplot(224) % second plant input
stairs(UU(:,2));
grid
title("MV(2) continuous between [-2 2]")

The simulation results are identical as the ones achieved using the sim command.

See Also
“Discrete Control Set MPC” on page 1-15

 Solve a Discrete Set MPC Problem in MATLAB

1-19

Related Examples
• “Solve a Discrete Set MPC Problem in Simulink” on page 1-21
• “Surge Tank Control Using Discrete Control Set MPC” on page 1-24

1 Controller Creation

1-20

Solve a Discrete Set MPC Problem in Simulink
This example shows how to solve, using Simulink, an MPC problem in which some manipulated
variables belong to a discrete set.

Create a Plant Model

Fix the random generator seed for reproducibility.

rng(0);

Create a discrete-time strictly proper plant with 4 states, two inputs and one output.

plant = drss(4,1,2);
plant.D = 0;

Increase the control authority of the first input, to better illustrate its control contribution.

plant.B(:,1)=plant.B(:,1)*2;

Design the MPC Controller

Create an MPC controller with one second sampling time, 20 steps prediction horizon and 5 steps
control horizon.

mpcobj = mpc(plant,0.1,20,5);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Specify the first manipulated variable as belonging to a discrete set of seven possible values. Note
that you Could also specify it as an integer using the instruction mpcobj.MV(1).Type =
'integer'; in which case the first manipulated variable will be constrained to be an integer.

mpcobj.MV(1).Type = [-1 -0.7 -0.3 0 0.2 0.5 1];

Use rate limits to enforce maximum increment and decrement values for the first manipulated
variable.

mpcobj.MV(1).RateMin = -0.5;
mpcobj.MV(1).RateMax = 0.5;

Set limits on the second manipulated variable, whose default type (continuous) has not been changed.

mpcobj.MV(2).Min = -2;
mpcobj.MV(2).Max = 2;

Control the Plant Model in Simulink

Create an output reference signal equal to zero from steps 20 to 35 and equal to 0.6 before and
after.

r = ones(1,50)*0.6;
r(20:35) = 0;

 Solve a Discrete Set MPC Problem in Simulink

1-21

Create a Simulink closed loop simulation using the MPC Controller block, with the mpcobj object
passed as a parameter, to control the double integrator plant. For this example, open the pre-existing
Simulink model dcsdemo.slxc.

open('dcsdemo.slx')

You can now run the model by clicking Run or by using the MATLAB command sim.

sim('dcsdemo.slx')

-->No sample time provided for plant model. Assuming sample time = controller's sample time = 0.1.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

ans =
 Simulink.SimulationOutput:

 tout: [51x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

After the simulation, the plots of the two scopes show that the manipulated variable does not exceed
the limit and the plant output tracks the reference signal after approximately half a second.

1 Controller Creation

1-22

See Also
“Discrete Control Set MPC” on page 1-15

Related Examples
• “Solve a Discrete Set MPC Problem in MATLAB” on page 1-16
• “Surge Tank Control Using Discrete Control Set MPC” on page 1-24

 Solve a Discrete Set MPC Problem in Simulink

1-23

Surge Tank Control Using Discrete Control Set MPC
This example shows how to use a linear MPC controller with both continuous- and discrete-set control
actions to control the level of a surge tank in Simulink®.

Overview

Many petrochemical processes include surge capacity to insulate downstream operations from upsets
in upstream flows. This example considers a liquid surge tank supplied by two pumps.

• Pump 1 is variable-speed and can deliver a flow rate between 0 and 100 L/min. The rate of change
of the flow rate is limited to 50 L/min per minute.

• Pump 2 is on-off and delivers 100 L/min when it is on.

This system also has a continuously adjustable valve that regulates the tank discharge to
accommodate a downstream process.

mdl = 'ReservoirMPC';
open_system(mdl)

The control objective is to use the two pumps (manipulated variables) to maintain the tank volume at
its setpoint when the discharge valve introduces a disturbance to the surge tank (measured
disturbance).

When downstream demand is constant, pump 1 controls the surge tank level, ideally keeping it near
50%. When a disturbance occurs, both pumps can go into action to maintain the tank volume between
25% and 75% during the transient time. When downstream demand is high, however, Pump 2 must
turn on.

In summary, the MPC controller manages the two pumps such that:

• The tank level stays near 50% when demand is constant.

1 Controller Creation

1-24

• The tank level stays within the ideal range when Pump 2 turns on and off. Rapid Pump 2 on-off
cycling is undesirable.

Create Linear Plant from Nonlinear Surge Tank Model

In the Simulink model, the surge tank model is in the Reservoir subsystem. It implements the
following equations.

• dV/dt = Qin - Qout, where V is the tank volume between 0 and 100 (percent)
• Qin = Q1 + Q2, the sum of the two pump flow rates (L/min)
• Qout = 0.2*sqrt(2)*X*sqrt(V), the discharge rate (L/min)
• X, the discharge valve, which can open between 0 and 100 (percent)

The plant starts running at its nominal steady-state operating point: pump 1 runs at 70 L/min, pump 2
is off, the discharge valve is at 35%, and the tank volume is at 50%. Create a linear model of the tank
at this operating point. This model has three inputs: the manipulated variables Q1 and Q2, and the
measured disturbance|X|.

plant = ss(-0.7,[1 1 -2],1,[0 0 0]);
plant = setmpcsignals(plant,'MV',[1 2],'MD',3);

Design MPC Controller with Continuous and Discrete Control Actions

Create a linear MPC controller with a sample time of one second, default prediction and control
horizons, and default cost function weights.

Ts = 1;
MPCobj = mpc(plant,Ts);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Set the nominal values for the controller to match the steady-state operating point.

MPCobj.Model.Nominal.U = [70; 0; 35];
MPCobj.Model.Nominal.Y = 50;
MPCobj.Model.Nominal.X = 50;
MPCobj.Model.Nominal.DX = 0;

Choose the MVRate weights such that the controller adjusts pump 1 in preference to pump 2. That is,
the controller penalizes pump 2 adjustments less than pump 1 adjustments.

MPCobj.Weights.MVrate = [0.1 0.2];

Specify safety bounds on the continuous input and output signals.

MPCobj.OV.Min = 0;
MPCobj.OV.Max = 100;
MPCobj.MV(1).Min = 0;
MPCobj.MV(1).Max = 100;
MPCobj.MV(1).RateMin = -50;
MPCobj.MV(1).RateMax = 50;

 Surge Tank Control Using Discrete Control Set MPC

1-25

Since pump 2 has two discrete settings (0 and 100 L/min), specify a discrete set in the Type property
of this controller. Depending on your application, the Type property can also be binary or integer.

MPCobj.MV(2).Type = [0 100];

Simulate Closed-Loop Response with Discharge Disturbance

The simulation begins at the nominal condition. At t = 5, the discharge rate ramps up until pump 1 is
at its full capacity and pump 2 must turn on. Pump 2 turns on at t = 12. Pump 1 must then decrease
as rapidly as possible to keep the level in bounds, then establish a new steady-state operating point.
At t = 60, the discharge begins to ramp down to the nominal state. The MPC controller keeps the
volume within the ideal range, and pump 2 does not exhibit rapid cycling.

sim(mdl)
open_system([mdl '/Volume'])

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

ans =

 Simulink.SimulationOutput:
 tout: [106x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

1 Controller Creation

1-26

The following figure shows the flow rates from two pumps.

open_system([mdl '/Pumps'])

 Surge Tank Control Using Discrete Control Set MPC

1-27

As expected, the MPC controller turns pump 2 on and off.

bdclose(mdl) % close simulink model.

See Also
“Discrete Control Set MPC” on page 1-15

Related Examples
• “Solve a Discrete Set MPC Problem in MATLAB” on page 1-16
• “Solve a Discrete Set MPC Problem in Simulink” on page 1-21

1 Controller Creation

1-28

Specify Scale Factors
Recommended practice includes specification of scale factors for each plant input and output
variable, which is especially important when certain variables have much larger or smaller
magnitudes than others.

The scale factor should equal (or approximate) the span of the variable. Span is the difference
between its maximum and minimum value in engineering units, that is, the unit of measure specified
in the plant model. Internally, MPC divides each plant input and output signal by its scale factor to
generate dimensionless signals.

The potential benefits of scaling are as follows:

• Default MPC tuning weights work best when all signals are of order unity. Appropriate scale
factors make the default weights a good starting point for controller tuning and refinement.

• When choosing cost function weights, you can focus on the relative priority of each term rather
than a combination of priority and signal scale.

• Improved numerical conditioning. When values are scaled, round-off errors have less impact on
calculations.

Once you have tuned the controller, changing a scale factor is likely to affect performance and the
controller may need retuning. Best practice is to establish scale factors at the beginning of controller
design and hold them constant thereafter.

You can define scale factors at the command line and using the MPC Designer app.

Determine Scale Factors
To identify scale factors, estimate the span of each plant input and output variable in engineering
units.

• If the signal has known bounds, use the difference between the upper and lower limit.
• If you do not know the signal bounds, consider running open-loop plant model simulations. You

can vary the inputs over their likely ranges, and record output signal spans.
• If you have no idea, use the default scale factor (=1).

Specify Scale Factors at Command Line
After you create the MPC controller object using the mpc command, set the scale factor property for
each plant input and output variable.

For example, the following commands create a random plant, specify the signal types, and define a
scale factor for each signal.

% Random plant for illustrative purposes: 5 inputs, 3 outputs
Plant = drss(4,3,5);
Plant.InputName = {'MV1','UD1','MV2','UD2','MD'};
Plant.OutputName = {'UO','MO1','MO2'};

% Example signal spans
Uspan = [2, 20, 0.1, 5, 2000];
Yspan = [0.01, 400, 75];

 Specify Scale Factors

1-29

% Example signal type specifications
iMV = [1 3];
iMD = 5;
iUD = [2 4];
iDV = [iMD,iUD];
Plant = setmpcsignals(Plant,'MV',iMV,'MD',iMD,'UD',iUD, ...
 'MO',[2 3],'UO',1);
Plant.D(:,iMV) = 0; % MPC requires zero direct MV feed-through

% Controller object creation. Ts = 0.3 for illustration.
MPCobj = mpc(Plant,0.3);

% Override default scale factors using specified spans
for i = 1:2
 MPCobj.MV(i).ScaleFactor = Uspan(iMV(i));
end

% NOTE: DV sequence is MD followed by UD
for i = 1:3
 MPCobj.DV(i).ScaleFactor = Uspan(iDV(i));
end
for i = 1:3
 MPCobj.OV(i).ScaleFactor = Yspan(i);
end

Specify Scale Factors Using MPC Designer
After opening MPC Designer and defining the initial MPC structure, on the MPC Designer tab,

click I/O Attributes .

In the Input and Output Channel Specifications dialog box, specify a Scale Factor for each input and
output signal.

1 Controller Creation

1-30

To update the controller settings, click OK.

See Also
mpc | MPC Designer

More About
• “Choose Sample Time and Horizons” on page 1-2
• “Using Scale Factors to Facilitate MPC Weights Tuning” on page 1-32

 Specify Scale Factors

1-31

Using Scale Factors to Facilitate MPC Weights Tuning
This example shows how to specify scale factors in an MPC controller to make weights tuning easier.

Define Plant Model

The discrete-time, linear, state-space plant model has 10 states, 5 inputs, and 3 outputs.

[plant,Ts] = mpcscalefactor_model;
[ny,nu] = size(plant.D);

The plant inputs include manipulated variable (MV), measured disturbance (MD) and unmeasured
disturbance (UD). The plant outputs include measured outputs (MO) and unmeasured outputs (UO).

MVindex = [1, 3, 5];
MDindex = 4;
UDindex = 2;
MOindex = [1 3];
UOindex = 2;
plant = setmpcsignals(plant,'MV',MVindex,'MD',MDindex,'UD',UDindex,'MO',MOindex,'UO',UOindex);

The nominal values and operating ranges of plant model are as follows:

• Input 1: manipulated variable, nominal value is 100, range is [50 150]
• Input 2: unmeasured disturbance, nominal value is 10, range is [5 15]
• Input 3: manipulated variable, nominal value is 0.01, range is [0.005 0.015]
• Input 4: measured disturbance, nominal value is 0.1, range is [0.05 0.15]
• Input 5: manipulated variable, nominal value is 1, range is [0.5 1.5]
• Output 1: measured output, nominal value is 0.01, range is [0.005 0.015]
• Output 2: unmeasured output, nominal value is 1, range is [0.5 1.5]
• Output 3: measured output, nominal value is 100, range is [50 150]

Define and Analyze Open-Loop Plant Signals

Use lsim command to run an open loop linear simulation to verify that plant outputs are within the
range and their average are close to the nominal values when input signals vary randomly around
their nominal values.

% set input and output range
Urange = [100;10;0.01;0.1;1];
Yrange = [0.01;1;100];

% set input and output nominal values
% for this example nominal values are equivalent to ranges
Unominal = [100;10;0.01;0.1;1];
Ynominal = [0.01;1;100];

% define time intervals
t = (0:1000)'*Ts;
nt = length(t);

% define input and output signals
Uol = (rand(nt,nu)-0.5).*(ones(nt,1)*Urange'); % design input signal
Yol = lsim(plant,Uol,t); % compute plant output

1 Controller Creation

1-32

fprintf('The difference between average output values and the nominal values are %.2f%%, %.2f%%, %.2f%% respectively.\n',...
 abs(mean(Yol(:,1)))/Ynominal(1)*100,abs(mean(Yol(:,2)))/Ynominal(2)*100,abs(mean(Yol(:,3)))/Ynominal(3)*100);

The difference between average output values and the nominal values are 2.25%, 3.53%, 2.47% respectively.

Display means and standard deviations of input and output signals.

% input
mean(Uol)

ans = 1×5

 0.6682 -0.1202 -0.0000 0.0009 0.0025

std(Uol)

ans = 1×5

 28.3302 2.9136 0.0029 0.0281 0.2805

% output
mean(Yol)

ans = 1×3

 -0.0002 0.0353 2.4706

std(Yol)

ans = 1×3

 0.0038 0.5615 39.6285

Hrer, the mean value give a good idea of the actual nominal values and the standard deviation
capture some idea of th range.

Evaluate MPC with Default MPC Weights

When plant input and output signals have different orders of magnitude, default MPC weight settings
often give poor performance.

Create an MPC controller with default weights:

• Weight.MV = 0
• Weight.MVRate = 0.1
• Weight.OV = 1

% create mpc object
mpcobjUnscaled = mpc(plant);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

 Using Scale Factors to Facilitate MPC Weights Tuning

1-33

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

% nominal values of the plant states
Xnominal = zeros(10,1);

% nominal values for unmeasured disturbance
Unominal(UDindex) = 0; % Nominal values for unmeasured disturbance must be 0

% Set nominal values
mpcobjUnscaled.Model.Nominal = struct('X',Xnominal,'DX',Xnominal,'Y',Ynominal,'U',Unominal);

To calculate plant outputs, sim will subtract the nominal plant inputs from the inputs, and the
nominal states from the current states, then apply the linear plant equations, and finally add the
nominal output values to the calculated output.

To calculate the manipulated variables, it will remove the nominal output from the plant output
signal, calculate the MPC control sequence, and add the nominal value of the manipulated variables
to the calculated sequence.

First, test a sequence of step setpoint changes in three reference signals.

nStepLen = 15; % expected step response duration
Ns1 = nStepLen*ny; % calculate simulation time to accommodate ny steps
r1 = ones(Ns1,1)*Ynominal(:)'; % reference signal

% cycle through each output and define references at StepLen intervals
StepTime = 1;
for i = 1:ny
 r1(StepTime:end,i) = r1(StepTime:end,i) + Yrange(i);
 StepTime = StepTime + nStepLen;
end

% simulate closed loop for Ns1 steps and subject to reference r1
sim(mpcobjUnscaled,Ns1,r1)

-->The "Model.Disturbance" property of "mpc" object is empty:
 Assuming unmeasured input disturbance #2 is integrated white noise.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
 Assuming no disturbance added to measured output channel #3.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

1 Controller Creation

1-34

 Using Scale Factors to Facilitate MPC Weights Tuning

1-35

The tracking response of the first output is poor. The reason is that its range is small compared to the
other outputs. If the default controller tuning weights are used, the MPC controller does not pay
much attention to regulating this output because the associated penalty is so small compared to the
other outputs in the objective function.

Second, test the unmeasured disturbance rejection.

% create simulation options object and set unmeasured disturbance
SimOpt = mpcsimopt;
SimOpt.UnmeasuredDisturbance = Urange(UDindex)';

% set number of simulation steps and reference signal
% reference signal is equal to the range values
Ns2 = 100;
r2 = ones(Ns2,1)*Yrange(:)';

% simulate the closed loop subject to reference r2
sim(mpcobjUnscaled,Ns2,r2,[],SimOpt)

1 Controller Creation

1-36

 Using Scale Factors to Facilitate MPC Weights Tuning

1-37

The disturbance rejection response is also poor. None of the outputs return to their setpoints.

Evaluate MPC with Default MPC Weights After Specifying Scale Factors

Specifying input and output scale factors for the MPC controller:

• Improves the numerical quality of the optimization and state estimation calculations.
• Makes it more likely that the default tuning weights will achieve good controller performance.

Copy the MPC controller with default weights.

mpcobjScaled = mpcobjUnscaled;

To specify scale factors, it is good practice to use the expected operating range of each input and
output.

% scale manipulated variables
for i = 1:length(MVindex)
 mpcobjScaled.ManipulatedVariables(i).ScaleFactor = Urange(MVindex(i));
end

% scale measured disturbances
nmd = length(MDindex);
for i = 1:nmd
 mpcobjScaled.DisturbanceVariables(i).ScaleFactor = Urange(MDindex(i));
end

1 Controller Creation

1-38

% scale unmeasured disturbances
for i = 1:length(UDindex)
 mpcobjScaled.DisturbanceVariables(i+nmd).ScaleFactor = Urange(UDindex(i));
end

% scale outputs
for i = 1:ny
 mpcobjScaled.OV(i).ScaleFactor = Yrange(i);
end

Repeat the first test, which is a sequence of step setpoint changes in three reference signals.

sim(mpcobjScaled,Ns1,r1)

-->The "Model.Disturbance" property of "mpc" object is empty:
 Assuming unmeasured input disturbance #2 is integrated white noise.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
 Assuming no disturbance added to measured output channel #3.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Using Scale Factors to Facilitate MPC Weights Tuning

1-39

Repeat the second test, which is an unmeasured disturbance.

sim(mpcobjScaled,Ns2,r2,[],SimOpt)

1 Controller Creation

1-40

 Using Scale Factors to Facilitate MPC Weights Tuning

1-41

Both setpoint tracking and disturbance rejection responses are good even without tuning MPC
weights. This is because now the original weights apply to scaled signals, and therefore the weighting
effect is not distorted.

See Also
mpc | MPC Designer

More About
• “Specify Scale Factors” on page 1-29

1 Controller Creation

1-42

Tune Weights
A model predictive controller design usually requires some tuning of the cost function weights. This
topic provides tuning tips. See “Optimization Problem” on page 2-7 for details on the cost function
equations.

Initial Tuning
• Before tuning the cost function weights, specify scale factors for each plant input and output

variable. Hold these scale factors constant as you tune the controller. See “Specify Scale Factors”
on page 1-29 for more information.

• During tuning, use the sensitivity and review commands to obtain diagnostic feedback. The
sensitivity command is intended to help with cost function weight selection.

• Change a weight by setting the appropriate controller property, as follows:

To change this weight Set this controller property Array size
OV reference tracking (wy) Weights.OV p-by-ny

MV reference tracking (wu) Weights.MV p-by-nu

MV increment suppression
(wΔu)

Weights.MVRate p-by-nu

Here, MV is a plant manipulated variable, and nu is the number of MVs. OV is a plant output variable,
and ny is the number of OVs. Finally,p is the number of steps in the prediction horizon.

If a weight array contains n < p rows, the controller duplicates the last row to obtain a full array of p
rows. The default (n = 1) minimizes the number of parameters to be tuned, and is therefore
recommended. See “Setting Time-Varying Weights and Constraints with MPC Designer” on page 5-
42 for an alternative.

Tips for Setting OV Weights

• Considering the ny OVs, suppose that nyc must be held at or near a reference value (setpoint). If
the ith OV is not in this group, set Weights.OV(:,i) = 0.

• If nu ≥ nyc, it is usually possible to achieve zero OV tracking error at steady state, if at least nyc
MVs are not constrained. The default Weights.OV = ones(1,ny) is a good starting point in this
case.

If nu > nyc, however, you have excess degrees of freedom. Unless you take preventive measures,
therefore, the MVs may drift even when the OVs are near their reference values.

• The most common preventive measure is to define reference values (targets) for the number of
excess MVs you have, nu – nyc. Such targets can represent economically or technically desirable
steady-state values.

• An alternative measure is to set w∆u > 0 for at least nu – nyc MVs to discourage the controller
from changing them.

• If nu < nyc, you do not have enough degrees of freedom to keep all required OVs at a setpoint. In
this case, consider prioritizing reference tracking. To do so, set Weights.OV(:,i) > 0 to
specify the priority for the ith OV. Rough guidelines for this are as follows:

 Tune Weights

1-43

• 0.05 — Low priority: Large tracking error acceptable
• 0.2 — Below-average priority
• 1 — Average priority – the default. Use this value if nyc = 1.
• 5 — Above average priority
• 20 — High priority: Small tracking error desired

Tips for Setting MV Weights

By default, Weights.MV = zeros(1,nu). If some MVs have targets, the corresponding MV
reference tracking weights must be nonzero. Otherwise, the targets are ignored. If the number of MV
targets is less than (nu – nyc), try using the same weight for each. A suggested value is 0.2, the same
as below-average OV tracking. This value allows the MVs to move away from their targets
temporarily to improve OV tracking.

Otherwise, the MV and OV reference tracking goals are likely to conflict. Prioritize by setting the
Weights.MV(:,i) values in a manner similar to that suggested for Weights.OV (see above).
Typical practice sets the average MV tracking priority lower than the average OV tracking priority
(e.g., 0.2 < 1).

If the ith MV does not have a target, set Weights.MV(:,i) = 0 (the default).

Tips for Setting MV Rate Weights

• By default, Weights.MVRate = 0.1*ones(1,nu). The reasons for this default include:

• If the plant is open-loop stable, large increments are unnecessary and probably undesirable.
For example, when model predictions are imperfect, as is always the case in practice, more
conservative increments usually provide more robust controller performance, but poorer
reference tracking.

• These values force the QP Hessian matrix to be positive-definite, such that the QP has a unique
solution if no constraints are active.

To encourage the controller to use even smaller increments for the ith MV, increase the
Weights.MVRate(:,i) value.

• If the plant is open-loop unstable, you might need to decrease the average Weight.MVRate value
to allow sufficiently rapid response to upsets.

Tips for Setting ECR Weights

See “Constraint Softening” on page 1-7 for tips regarding the Weights.ECR property.

Testing and Refinement
To focus on tuning individual cost function weights, perform closed-loop simulation tests under the
following conditions:

• No constraints.
• No prediction error. The controller prediction model should be identical to the plant model. Both

the MPC Designer app and the sim function provide the option to simulate under these
conditions.

1 Controller Creation

1-44

Use changes in the reference and measured disturbance signals (if any) to force a dynamic response.
Based on the results of each test, consider changing the magnitudes of selected weights.

One suggested approach is to use constant Weights.OV(:,i) = 1 to signify “average OV tracking
priority,” and adjust all other weights to be relative to this value. Use the sensitivity command for
guidance. Use the review command to check for typical tuning issues, such as lack of closed-loop
stability.

See “Adjust Disturbance and Noise Models” on page 3-25 for tests focusing on the disturbance
rejection ability of the controller.

Robustness
Once you have weights that work well under the above conditions, check for sensitivity to prediction
error. There are several ways to do so:

• If you have a nonlinear plant model of your system, such as a Simulink model, simulate the closed-
loop performance at operating points other than that for which the LTI prediction model applies.

• Alternatively, run closed-loop simulations in which the LTI model representing the plant differs
(such as in structure or parameter values) from that used at the MPC prediction model. Both the
MPC Designer app and the sim function provide the option to simulate under these conditions.
For an example, see “Test MPC Controller Robustness using MPC Designer” on page 5-5.

If controller performance seems to degrade significantly in comparison to tests with no prediction
error, for an open-loop stable plant, consider making the controller less aggressive.

In MPC Designer, on the Tuning tab, you can do so using the Closed-Loop Performance slider.

Moving towards more robust control decreases OV/MV weights and increases MV Rate weights,
which leads to relaxed control of outputs and more conservative control moves.

At the command line, you can make the following changes to decrease controller aggressiveness:

• Increase all Weight.MVRate values by a multiplicative factor of order 2.
• Decrease all Weight.OV and Weight.MV values by dividing by the same factor.

After adjusting the weights, reevaluate performance both with and without prediction error.

• If both are now acceptable, stop tuning the weights.
• If there is improvement but still too much degradation with model error, increase the controller

robustness further.
• If the change does not noticeably improve performance, restore the original weights and focus on

state estimator tuning (see “Adjust Disturbance and Noise Models” on page 3-25).

 Tune Weights

1-45

Finally, if tuning changes do not provide adequate robustness, consider one of the following options:

• Adaptive MPC control on page 7-2
• Gain-scheduled MPC control on page 8-2

See Also

More About
• “Optimization Problem” on page 2-7
• “Specify Constraints” on page 1-5
• “Adjust Disturbance and Noise Models” on page 3-25
• “Tuning MPC Controller Weights at Run-Time” on page 5-36
• “Setting Targets for Manipulated Variables” on page 3-2

1 Controller Creation

1-46

Design Model Predictive Controller at Equilibrium Operating
Point

This example shows how to design a model predictive controller with nonzero nominal values.

The plant model is obtained by linearization of a nonlinear plant in Simulink® at a nonzero steady-
state operating point.

Linearize Nonlinear Plant Model

To run this example, Simulink and Simulink Control Design™ are required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink is required to run this example.')
 return
end
if ~mpcchecktoolboxinstalled('slcontrol')
 disp('Simulink Control Design is required to run this example.')
 return
end

The nonlinear plant is implemented in Simulink model mpc_nloffsets and linearized at the default
operating condition using the linearize function from Simulink Control Design.

Create operating point specification for the current model initial condition.

plant_mdl = 'mpc_nloffsets';
op = operspec(plant_mdl);

Compute the operating point for this initial condition.

[op_point, op_report] = findop(plant_mdl,op);

 Operating point search report:

opreport =

 Operating point search report for the Model mpc_nloffsets.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

 Min x Max dxMin dx dxMax
 ____ _______ ___ _____ ___________ _____

(1.) mpc_nloffsets/Integrator
 -Inf 0.57514 Inf 0 -1.8208e-14 0
(2.) mpc_nloffsets/Integrator2
 -Inf 2.1503 Inf 0 -8.3844e-12 0

Inputs:

 Min u Max

 Design Model Predictive Controller at Equilibrium Operating Point

1-47

 ____ ______ ___

(1.) mpc_nloffsets/In1
 -Inf -1.252 Inf

Outputs:

 Min y Max
 ____ ________ ___

(1.) mpc_nloffsets/Out1
 -Inf -0.52938 Inf

Extract nominal state, output, and input values from the computed operating point.

x0 = [op_report.States(1).x;op_report.States(2).x];
y0 = op_report.Outputs.y;
u0 = op_report.Inputs.u;

Linearize the plant at the initial condition.

plant = linearize(plant_mdl,op_point);

Design MPC Controller

Create an MPC controller object with a specified sample time Ts, prediction horizon p, and control
horizon m.

Ts = 0.1;
p = 20;
m = 3;
mpcobj = mpc(plant,Ts,p,m);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Set the nominal values in the controller.

mpcobj.Model.Nominal = struct('X',x0,'U',u0,'Y',y0);

Set the output measurement noise model (white noise, zero mean, variance = 0.01).

mpcobj.Model.Noise = 0.1;

Set the manipulated variable constraint.

mpcobj.MV.Max = 0.2;

Simulate Using Simulink

Specify the reference value for the output signal.

r0 = 1.5*y0;

Open and simulate the model.

mdl = 'mpc_offsets';
open_system(mdl)
sim(mdl)

1 Controller Creation

1-48

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

 Design Model Predictive Controller at Equilibrium Operating Point

1-49

Simulate Using sim Command

Simulate the controller.

Tf = round(10/Ts);
r = r0*ones(Tf,1);
[y1,t1,u1,x1,xmpc1] = sim(mpcobj,Tf,r);

Plot and compare the simulation results.

subplot(1,2,1)
plot(y.time,y.signals.values,t1,y1,t1,r)
legend('Nonlinear','Linearized','Reference')
title('output')
grid
subplot(1,2,2)
plot(u.time,u.signals.values,t1,u1)
legend('Nonlinear','Linearized')
title('input')
grid

1 Controller Creation

1-50

bdclose(plant_mdl)
bdclose(mdl)

See Also
mpc | MPC Controller

 Design Model Predictive Controller at Equilibrium Operating Point

1-51

Design MPC Controller for Plant with Delays
This example shows how to design an MPC controller for a plant with delays using MPC Designer.

Plant Model

An example of a plant with delays is the distillation column model:

y1
y2

=

12.8e−s

16.7s + 1
−18.9e−3s

21.0s + 1
3.8e−8.1s

14.9s + 1
6.6e−7s

10.9s + 1
−19.4e−3s

14.4s + 1
4.9e−3.4s

13.2s + 1

u1
u2
u3

Outputs y1 and y2 represent measured product purities. The model consists of six transfer functions,
one for each input/output pair. Each transfer function is a first-order system with a delay. The longest
delay in the model is 8.1 minutes.

Specify the individual transfer functions for each input/output pair. For example, g12 is the transfer
function from input u2 to output y1.

g11 = tf(12.8,[16.7 1],'IOdelay',1.0,'TimeUnit','minutes');
g12 = tf(-18.9,[21.0 1],'IOdelay',3.0,'TimeUnit','minutes');
g13 = tf(3.8,[14.9 1],'IOdelay',8.1,'TimeUnit','minutes');
g21 = tf(6.6,[10.9 1],'IOdelay',7.0,'TimeUnit','minutes');
g22 = tf(-19.4,[14.4 1],'IOdelay',3.0,'TimeUnit','minutes');
g23 = tf(4.9,[13.2 1],'IOdelay',3.4,'TimeUnit','minutes');
DC = [g11 g12 g13;
 g21 g22 g23];

Configure Input and Output Signals

Define the input and output signal names.

DC.InputName = {'Reflux Rate','Steam Rate','Feed Rate'};
DC.OutputName = {'Distillate Purity','Bottoms Purity'};

Alternatively, you can specify the signal names in MPC Designer, on the MPC Designer tab, by
clicking I/O Attributes.

Specify the third input, the feed rate, as a measured disturbance (MD).

DC = setmpcsignals(DC,'MD',3);

Since they are not explicitly specified in setmpcsignals, all other input signals are configured as
manipulated variables (MV), and all output signals are configured as measured outputs (MO) by
default.

Open MPC Designer

Open MPC Designer importing the plant model.

mpcDesigner(DC)

1 Controller Creation

1-52

When launched with a continuous-time plant model, such as DC, the default controller sample time is
1 in the time units of the plant. If the plant is discrete time, the controller sample time is the same as
the plant sample time.

MPC Designer imports the specified plant to the Data Browser. The following are also added to the
Data Browser:

• mpc1 — Default MPC controller created using DC as its internal model.
• scenario1 — Default simulation scenario.

The app runs the simulation scenario and generates input and output response plots.

Specify Prediction and Control Horizons

For a plant with delays, it is good practice to specify the prediction and control horizons such that

P −M ≫ td, max/Δt

where,

• P is the prediction horizon.
• M is the control horizon.

 Design MPC Controller for Plant with Delays

1-53

• td,max is the maximum delay, which is 8.1 minutes for the DC model.
• Δt is the controller Sample time, which is 1 minute by default.

On the Tuning tab, in the Horizon section, specify a Prediction horizon of 30 and a Control
horizon of 5.

After you change the horizons, the Input Response and Output Response plots for the default
simulation scenario are automatically updated.

Simulate Controller Step Responses

On the MPC Designer tab, in the Scenario section, click Edit Scenario > scenario1. Alternatively,
in the Data Browser, right-click scenario1 and select Edit.

In the Simulation Scenario dialog box, specify a Simulation duration of 50 minutes.

In the Reference Signals table, in the Signal drop-down list, select Step for both outputs to
simulate step changes in their setpoints.

Specify a step Time of 0 for reference r(1), the distillate purity, and a step time of 25 for r(2), the
bottoms purity.

1 Controller Creation

1-54

Click OK.

The app runs the simulation with the new scenario settings and updates the input and output
response plots.

 Design MPC Controller for Plant with Delays

1-55

The Input Response plots show the optimal control moves generated by the controller. The
controller reacts immediately in response to the setpoint changes, changing both manipulated
variables. However, due to the plant delays, the effects of these changes are not immediately
reflected in the Output Response plots. The Distillate Purity output responds after 1 minute,
which corresponds to the minimum delay from g11 and g12. Similarly, the Bottoms Purity output
responds 3 minutes after the step change, which corresponds to the minimum delay from g21 and
g22. After the initial delays, both signals reach their setpoints and settle quickly. Changing either
output setpoint disturbs the response of the other output. However, the magnitudes of these
interactions are less than 10% of the step size.

Additionally, there are periodic pulses in the manipulated variable control actions as the controller
attempts to counteract the delayed effects of each input on the two outputs.

Improve Performance Using Manipulated Variable Blocking

Use manipulated variable blocking to divide the prediction horizon into blocks, during which
manipulated variable moves are constant. This technique produces smoother manipulated variable
adjustments with less oscillation and smaller move sizes.

To use manipulated variable blocking, on the Tuning tab, specify the Control horizon as a vector of
block sizes, [5 5 5 5 10].

1 Controller Creation

1-56

The initial manipulated variable moves are much smaller and the moves are less oscillatory. The
trade-off is a slower output response, with larger interactions between the outputs.

Improve Performance By Tuning Controller Weights

Alternatively, you can produce smooth manipulated variable moves by adjusting the tuning weights of
the controller.

Set the Control horizon back to the previous value of 5.

In the Performance Tuning section, drag the Closed-Loop Performance slider to the left towards
the Robust setting.

 Design MPC Controller for Plant with Delays

1-57

As you move the slider to the left, the manipulated variable moves become smoother and the output
response becomes slower.

References
[1] Wood, R. K., and M. W. Berry, Chem. Eng. Sci., Vol. 28, pp. 1707, 1973.

See Also
MPC Designer

More About
• “Manipulated Variable Blocking” on page 3-44
• “Design Controller Using MPC Designer”
• “Specify Multi-Input Multi-Output Plants”

1 Controller Creation

1-58

Design MPC Controller for Nonsquare Plants
This topic shows how to configure an MPC controller for a nonsquare plant with unequal numbers of
manipulated variables and outputs. Model Predictive Control Toolbox software supports plants with
an excess of manipulated variables or plant with an excess of outputs.

More Outputs Than Manipulated Variables
When there are excess outputs, you cannot hold all of them at independently chosen setpoints. In this
case, you have two options:

• Specify that certain outputs do not need to be held at a setpoint by setting their tuning weights to
zero.

The controller does not enforce setpoints on outputs with zero weight, so these outputs are free to
vary. If the plant has Ne more outputs than manipulated variables, and the static gain matrix is full
rank, setting Ne output weights to zero enables the controller to hold the remaining outputs at
their setpoints. If any manipulated variables are constrained at steady state, one or more output
responses can still exhibit steady-state error, depending on the magnitudes of reference and
disturbance signals.

Outputs with zero tuning weights can still be useful. If measured, the controller can use the
outputs to help estimate the state of the plant. The outputs can also be used as performance
indicators or held within an operating region defined by output constraints.

• Enforce setpoints on all outputs by specifying nonzero tuning weights for all of them.

The controller tries to hold all outputs at their respective setpoints. However, due to the limited
number of manipulated variables, all output responses exhibit some degree of steady-state error.

You can change the error magnitudes by adjusting the relative values of the output weights.
Increasing an output weight decreases the steady-state error in that output at the expense of
increased error in the other outputs.

You can configure the output tuning weights at the command line by setting the
Weights.OutputVariables property of the controller.

To configure output tuning weights in MPC Designer, on the Tuning tab, in the Design section,
click Weights to open the Weights dialog box.

In the Output Weights section, specify the Weight for each output variable. For example, if your
plant has two manipulated variables and three outputs, you can:

• Set one of the output weights to zero.

 Design MPC Controller for Nonsquare Plants

1-59

• Set all the weights to nonzero values. Outputs with higher weights exhibit less steady-state error.

1 Controller Creation

1-60

More Manipulated Variables Than Outputs
When there are excessive manipulated variables, the default MPC controller settings allow for error-
free output setpoint tracking. However, the manipulated variables values can drift. You can prevent
this drift by setting manipulated variable setpoints. If there are Ne excess manipulated variables, and
the static gain matrix is full rank, you can hold Ne of them at target values for economic or
operational reasons, and the remaining manipulated variables can attain the values required to
eliminate output steady-state error.

To configure a manipulated variable setpoint at the command line, use the
ManipulatedVariables.Target controller property. Then specify an input tuning weight using the
controller Weights.ManipulatedVariables property.

To define a manipulated variable setpoint in MPC Designer, on the Tuning tab, in the Design
section, click Weights.

In the Weights dialog box, in the Input Weights section, specify a nonzero Weight value for the
manipulated variable.

Specify a Target value for the manipulated variable.

 Design MPC Controller for Nonsquare Plants

1-61

By default, the manipulated variable Target is nominal, which means that it tracks the nominal
value specified in the controller properties.

Note Since nominal values apply to all controllers in an MPC Designer session, changing a
Nominal Value updates all controllers in the app. The Target value, however, is specific to each
individual controller.

The magnitude of the manipulated variable weight indicates how much the input can deviate from its
setpoint. However, there is a trade-off between manipulated variable target tracking and output
reference tracking. If you want to have better output setpoint tracking performance, use a relatively
small input weight. If you want the manipulated variable to stay close to its target value, increase its
input weight relative to the output weight.

You can also avoid drift by constraining one or more manipulated variables to a narrow operating
region using hard constraints. To define constraints in MPC Designer, on the Tuning tab, in the
Design section, click Constraints to open the Constraints dialog box.

In the Input Constraints section, specify Max and Min constraints values.

See Also
Apps
MPC Designer

1 Controller Creation

1-62

Functions
mpc

More About
• “Tune Weights” on page 1-43
• “Specify Multi-Input Multi-Output Plants”
• “Setting Targets for Manipulated Variables” on page 3-2

 Design MPC Controller for Nonsquare Plants

1-63

Design MPC Controller for Identified Plant Model
You can define the internal plant model of your model predictive controller using a linear model
identified using System Identification Toolbox software. You can identify the plant model and design
the MPC controller interactively using apps or programmatically at the command line. For more
information on identifying plant models, see “Identify Plant from Data”.

The System Identification app is not supported in MATLAB Online™.

Design Controller for Identified Plant Using Apps
This example shows how to interactively design a model predictive controller using an identified plant
model. First, estimate the plant model from data using the System Identification app. Then design
an MPC controller by importing the identified plant into MPC Designer.

Load Input/Output Data

Load the input and output data for identification.

 load(fullfile(matlabroot,'examples','mpc','plantIO'))

This command imports the plant input signal, u, output signal, y, and sample time, Ts, to the
MATLAB workspace.

Open the System Identification app.

systemIdentification

In the System Identification app, under Import data, select Time domain data.

1 Controller Creation

1-64

In the Import Data dialog box, specify the Input, Output, and Sample time using the data from the
MATLAB workspace.

Also, specify the Data name as ioData and Starting time as 0.

Click Import. The app imports the data, creates an iddata object with the specified name and signal
properties, and adds this object to the Data Views area.

 Design MPC Controller for Identified Plant Model

1-65

Preprocess Data

Typically, you must preprocess identification I/O data before estimating a model. For this example,
remove the offsets from the input and output signals by detrending the data. In the System
Identification app, under Preprocess, select Remove trends.

1 Controller Creation

1-66

The app creates a data object, ioDatad, using the preprocessed data, and adds this object to the
Data Views area.

For more information on preprocessing identification data, see “Preprocess Data” (System
Identification Toolbox).

Estimate Linear Model

To use the detrended data, ioDatad, for model estimation, first drag the corresponding data object
from the Data Views area to Working Data.

 Design MPC Controller for Identified Plant Model

1-67

To estimate a state-space model, under Estimate, select State Space Models.

1 Controller Creation

1-68

In the State Space Models dialog box, specify the properties of the estimated model and the
estimation options. For this example, estimate a second-order, discrete-time model, leaving the other
estimation options at their default values.

 Design MPC Controller for Identified Plant Model

1-69

For more information on estimating state-space models, see “State-Space Models” (System
Identification Toolbox).

Click Estimate. The app estimates a state-space model, ss1, and adds the model to the Model
Views area.

1 Controller Creation

1-70

The estimated model has one measured input and one unmeasured noise component.

Import Identified Plant to MPC Designer

To use ss1 for MPC control design, first export the model to the MATLAB workspace.

Drag ss1 from the Model Views area to To Workspace.

 Design MPC Controller for Identified Plant Model

1-71

Open MPC Designer. At the MATLAB command line, type:

mpcDesigner

To import the identified model, in MPC Designer, click MPC Structure. In the Define MPC
Structure By Importing dialog box, select ss1 from the table.

1 Controller Creation

1-72

Click Define and Import.

 Design MPC Controller for Identified Plant Model

1-73

Tip You can also import the identified model when opening MPC Designer.

mpcDesigner(ss1)

The app converts the identified plant to a discrete-time, state-space model, if necessary, and creates a
default MPC controller, mpc1, in which the:

• Measured input of the identified plant is a manipulated variable.
• Output of the identified plant is a measured output.

By default, the MPC controller discards the unmeasured noise component from your identified model.
To configure noise channels as unmeasured disturbances, you must first create an augmented state-
space model from your identified model. For more information, see “Configure Noise Channels as
Unmeasured Disturbances” on page 1-84.

Note You can also import an identified linear model into an existing MPC Designer session. In MPC
Designer, click Import Plant. In the Import Plant Model dialog box, select an identified model from
the table.

1 Controller Creation

1-74

Only identified models with an I/O configuration that is compatible with the current MPC structure
are displayed in the Import Plant Model dialog box. If the current MPC structure includes
unmeasured disturbances, any noise channels from the identified model are converted to unmeasured
disturbances. Otherwise, the noise channels are discarded.

Specify I/O Attributes

To improve controller performance and simplify controller tuning, specify the following attributes for
each input and output signal:

• Scale Factor — Scale each signal by a factor that approximates its span, which is the difference
between its maximum and minimum values. Scaling simplifies controller weight tuning and
improves the numerical conditioning of the controller. For more information, see “Specify Scale
Factors” on page 1-29.

• Nominal Value — Apply an offset to each signal that corresponds to the nominal operating
conditions under which you collected the identification data; that is the offsets removed by
detrending the data. Specifying nominal values places the controller at the same operating point
as the plant, which is important when the plant is a nonlinear system.

In MPC Designer, on the MPC Designer tab, click I/O Attributes.

In the Input and Output Channel Specifications dialog box, specify the Nominal Value and Scale
Factor for the input and output signals.

 Design MPC Controller for Identified Plant Model

1-75

Click OK.

1 Controller Creation

1-76

The default controller tracks the output reference value well, however the initial controller response
is aggressive.

Tip You can specify the Nominal Value or Scale Factor using expressions such as mean(u) or
max(y) - min(y) respectively, where u and y are the I/O signals from the MATLAB workspace.

 Design MPC Controller for Identified Plant Model

1-77

Configure Simulation Scenario

In MPC Designer, on the Tuning tab, click Edit Scenario > scenario1.

In the Simulation Scenario dialog box, specify a Simulation duration of 5 seconds.

In the Reference Signals section, keep the default step signal.

Click OK.

Tune Controller

Before tuning your controller, it is good practice to specify the controller sample time, prediction
horizon, and control horizon. Since you identified a discrete-time plant model, the controller
automatically derives its sample time from the identified model. For this example, use the default
prediction and control horizons. For more information, see “Choose Sample Time and Horizons” on
page 1-2.

To make the controller less aggressive, on the Tuning tab, drag the Closed-Loop Performance
slider to the left. Doing so increases the cost function weight on the manipulated variable rate of
change, and decreases the weight on the output variable.

1 Controller Creation

1-78

The input response is now more conservative. The trade-offs are an increased overshoot and longer
settling time.

For more information on tuning controller weights, see “Tune Weights” on page 1-43.

Note If your plant has known physical or safety constraints that limit the output range, input range,
or input signal rate of change, you can specify these constraints in the MPC controller. If so, define
the constraints before tuning your controller weights. For more information, see “Specify
Constraints” on page 1-5.

Design Controller for Identified Plant at the Command Line
This example shows how to design a model predictive controller at the command line using an
identified plant model.

Load the input/output data.

load plantIO

This command imports the plant input signal, u, plant output signal, y, and sample time, Ts, to the
MATLAB® workspace.

 Design MPC Controller for Identified Plant Model

1-79

Create an iddata object from the input and output data.

mydata = iddata(y,u,Ts);

Preprocess the I/O data by removing offsets (mean values) from the input and output signals.

mydatad = detrend(mydata);

You can also remove offsets by creating an ssestOptions object and specifying the InputOffset
and OutputOffset options.

Estimate a second order, linear state-space model using the I/O data. Estimate a discrete-time model
by specifying the sample time as Ts.

ss1 = ssest(mydatad,2,'Ts',Ts);

The estimated model has one measured input and one unmeasured noise component.

Create a default model predictive controller for the identified model, ss1.

mpcObj = mpc(ss1);

-->Converting linear model from System Identification Toolbox to state-space.
-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

By default the controller discards the unmeasured noise component from your identified model.

To simplify the tuning process, specify input and output signal scaling factors.

mpcObj.MV(1).ScaleFactor = max(u) - min(u);
mpcObj.OV(1).ScaleFactor = max(y) - min(y);

Specify the nominal values for the input and output signals. Use the offsets that you previously
removed from the I/O data.

nominalInput = mean(u);
nominalOutput = mean(y);
mpcObj.Model.Nominal.u = nominalInput;
mpcObj.Model.Nominal.y = nominalOutput;

Configure the simulation reference signal. Specify a reference signal with a five-second duration and
a unit step at a time of one second. The initial value of the reference signal is the nominal value of the
output signal.

outputRef = [nominalOutput*ones(1/Ts,1);
 (nominalOutput+1)*ones(4/Ts+1,1)];

Before tuning the controller, simulate the initial controller performance.

sim(mpcObj,[],outputRef)

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

1 Controller Creation

1-80

 Design MPC Controller for Identified Plant Model

1-81

The default controller tracks the output reference value well, however the initial controller response
is aggressive.

To make the controller less aggressive, simultaneously increase the tuning weight for the
manipulated variable rate of change and decrease the tuning weight for the output variable.

beta = 0.37;
mpcObj.Weights.MVRate = mpcObj.Weights.MVRate/beta;
mpcObj.Weights.OV = mpcObj.Weights.OV*beta;

Simulate the tuned controller response

sim(mpcObj,[],outputRef)

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

1 Controller Creation

1-82

 Design MPC Controller for Identified Plant Model

1-83

The input response is now more conservative. The trade-offs are an increased overshoot and longer
settling time.

Configure Noise Channels as Unmeasured Disturbances
When you create an MPC controller using an identified model, the software discards any noise
channels from the model by default. You can configure the noise channels as unmeasured
disturbances by augmenting the identified model.

Augment Identified Model with Noise Channels

To convert noise channels to unmeasured disturbances, first convert the identified model, ss1, to a
state-space model using the 'augmented' option. At the MATLAB command line, type:

ss2 = ss(ss1,'augmented');

This option creates a state-space model, ss2, with the following input groups:

• Measured — The input channels from the identified model.
• Noise — The noise channels from the identified model. The number of noise channels matches

the number of outputs channels.

1 Controller Creation

1-84

Note The System Identification Toolbox software assumes that the inputs to the Noise channels
are unit-variance Gaussian noise. Therefore, the augmented model encapsulates any noise
dynamics from the identified model, such as integration at the disturbance source.

You can then create an MPC controller using the augmented state-space model.

mpcObj = mpc(ss2);

The software configures the Measured inputs as manipulated variables and the Noise inputs as
unmeasured disturbances.

You can also import the augmented model into MPC Designer.

mpcDesigner(ss2)

To view the MPC signal configuration, in MPC Designer, on the MPC Designer tab, click MPC
Structure.

The View MPC Structure dialog box shows the noise channels as unmeasured disturbances.

 Design MPC Controller for Identified Plant Model

1-85

Configure Input Disturbance Model

When you convert an identified model to an augmented state-space model, the System Identification
Toolbox software assumes that noise sources are unit-variance Gaussian noise. However, by default,
MPC controllers model unmeasured input disturbances as integrated Gaussian noise. When designing
your controller, you can:

• Remove the integrators from the input disturbance model, which simplifies the controller. Use this
option if the experimental identification data was collected under conditions that closely match
the expected plant operating conditions. In this case, the augmented state-space model
encapsulates any noise dynamics from the identified system.

• Keep the default integrated white noise input disturbance model, which leads to more aggressive
disturbance rejection. Use this option if the experimental identification data was collected under
controlled conditions that may not match the expected plant operating conditions. In this case, the
controller compensates for noise dynamics that the augmented model does not encapsulate.

Note When using MPC Designer, you can tune your controller disturbance rejection properties by
adjusting the State Estimation slider. For more information, see “Disturbance Rejection Tuning” on
page 3-30.

To remove an integrator from an input disturbance model channel, configure that channel as a static
unit gain. For example, to remove the integrators from all input disturbance model channels, set the
input disturbance model to a static gain identity matrix. At the MATLAB command line, type:

setindist(mpcObj,ss(eye(Nd)));

where Nd is the number of unmeasured disturbances.

To set the disturbance model for an unmeasured disturbance channel to a static unit gain using MPC
Designer:

1 On the Tuning tab, select Estimation Models > Input Disturbance Model.
2 In the Input Disturbance Model dialog box, in the Update the model drop-down list, select

specifying a custom model channel by channel.
3 In the Specifications table, in the Disturbance drop-down list, select White Noise.
4 Specify a Magnitude of 1.

1 Controller Creation

1-86

5 Repeat steps 3 and 4 for each unmeasured disturbance.
6 To apply the changes and update the input disturbance model, click OK or Apply.

For more information about changing the input disturbance model, see “Adjust Disturbance and Noise
Models” on page 3-25.

Configure Simulation Scenario

You can simulate your MPC controller using unit-variance Gaussian noise unmeasured disturbance
signals, as assumed by the System Identification Toolbox software. This scenario emulates the
experimental conditions under which the data was collected for identification.

To configure unmeasured disturbance signals, create an MPC simulation option set for your controller
using mpcsimopt. At the MATLAB command line, type:

opt = mpcsimopt(mpcObj);

Configure the UnmeasuredDisturbance option using randn.

opt.UnmeasuredDisturbance = randn(T,Nd);

where T is the number of simulation steps and Nd is the number of unmeasured disturbances.

 Design MPC Controller for Identified Plant Model

1-87

Simulate the controller using this option set and an output reference signal, outputRef.

y = sim(mpcObj,T,outputRef,opt);

To configure your simulation in MPC Designer:

1 On the Tuning tab, under Edit Scenario select the simulation scenario you want to edit.
2 In the Simulation Scenario dialog box, in the Unmeasured Disturbances section, under Signal,

select Gaussian.
3 Specify a Size of 1, which corresponds to a unit variance.
4 To apply the disturbance from the start of the simulation, specify a Time of 0.

5 Repeat steps 2–4 for each unmeasured disturbance channel.
6 To apply the changes and update the MPC Designer response plots, click OK or Apply.

See Also
Apps
MPC Designer | System Identification

Functions
mpc | ssest | ss | sim

More About
• “About Identified Linear Models” (System Identification Toolbox)
• “Identify Plant from Data”
• “Design Controller Using MPC Designer”
• “Design MPC Controller at the Command Line”

1 Controller Creation

1-88

Generate MATLAB Code from MPC Designer
This topic shows how to generate MATLAB code for creating and simulating model predictive
controllers designed in the MPC Designer app. Generated MATLAB scripts are useful when you
want to programmatically reproduce designs that you obtained interactively.

To create a MATLAB script:

1 In the MPC Designer app, interactively design and tune your model predictive controller.
2 On the Tuning tab, in the Analysis section, click the Export Controller arrow .

Alternatively, on the MPC Designer tab, in the Result, click Export Controller.

Note If you opened MPC Designer from Simulink, click the Update and Simulate arrow .
3

Under Export Controller or Update and Simulate, click Generate Script .
4 In the Generate MATLAB Script dialog box, select one or more simulation scenarios to include in

the generated script.

5 Click Generate Script to create the MATLAB script for creating the current MPC controller and
running the selected simulation scenarios. The generated script opens in the MATLAB Editor.

In addition to generating a script, the app exports the following to the MATLAB workspace:

• A copy of the plant used to create the controller, that is the controller internal plant model
• Copies of the plants used in any simulation scenarios that do not use the default internal plant

model
• The reference and disturbance signals specified for each simulation scenario

See Also
mpc

 Generate MATLAB Code from MPC Designer

1-89

More About
• “Generate Simulink Model from MPC Designer” on page 5-14

1 Controller Creation

1-90

Design MPC Controller for Position Servomechanism
This example shows how to design a model predictive controller for a position servomechanism using
MPC Designer.

System Model

A position servomechanism consists of a DC motor, gearbox, elastic shaft, and load.

The differential equations representing this system are

ω̇L = −
kT
JL

θL−
θM
ρ −

βL
JL

ωL

ω̇M =
kM
JM

V − kMωM
R −

βMωM
JM

+
kT

ρ JM
θL−

θM
ρ

where,

• V is the applied voltage.
• T is the torque acting on the load.
• ωL = θ̇L is the load angular velocity.
• ωM = θ̇M is the motor shaft angular velocity.

The remaining terms are constant parameters.

 Design MPC Controller for Position Servomechanism

1-91

Constant Parameters for Servomechanism Model

Symbol Value (SI Units) Definition
kT 1280.2 Torsional rigidity
kM 10 Motor constant
JM 0.5 Motor inertia
JL 50JM Load inertia
ρ 20 Gear ratio
βM 0.1 Motor viscous friction coefficient
βL 25 Load viscous friction coefficient
R 20 Armature resistance

If you define the state variables as

xp = θL ωL θM ωM
T,

then you can model the servomechanism as an LTI state-space system.

ẋp =

0 1 0 0

−
kT
JL
−

βL
JL

kT
ρ JL

0

0 0 0 1

kT
ρ JM

0 −
kT

ρ2 JM
−

βM +
kM
2

R
JM

xp +

0
0
0

kM
R JM

V

θL = 1 0 0 0 xp

T = kT 0 −
kT
ρ 0 xp

The controller must set the angular position of the load, θL, at a desired value by adjusting the
applied voltage, V.

However, since the elastic shaft has a finite shear strength, the torque, T, must stay within the range |
T| ≤ 78.5 Nm. Also, the voltage source physically limits the applied voltage to the range |V| ≤ 220 V.

Construct Plant Model

Specify the model constants.

Kt = 1280.2; % Torsional rigidity
Km = 10; % Motor constant
Jm = 0.5; % Motor inertia
Jl = 50*Jm; % Load inertia
N = 20; % Gear ratio
Bm = 0.1; % Rotor viscous friction
Bl = 25; % Load viscous friction
R = 20; % Armature resistance

Define the state-space matrices derived from the model equations.

1 Controller Creation

1-92

A = [0 1 0 0;
 -Kt/Jl -Bl/Jl Kt/(N*Jl) 0;
 0 0 0 1;
 Kt/(Jm*N) 0 -Kt/(Jm*N^2) -(Bm+Km^2/R)/Jm];
B = [0; 0; 0; Km/(R*Jm)];
C = [1 0 0 0;
 Kt 0 -Kt/N 0];
D = [0; 0];

Create a state-space model.

plant = ss(A,B,C,D);

Open MPC Designer App

mpcDesigner

Import Plant and Define Signal Configuration

In MPC Designer, on the MPC Designer tab, select MPC Structure.

In the Define MPC Structure By Importing dialog box, select the plant plant model, and assign the
plant I/O channels to the following signal types:

• Manipulated variable — Voltage, V
• Measured output — Load angular position, θL

• Unmeasured output — Torque, T

 Design MPC Controller for Position Servomechanism

1-93

Click Define and Import.

MPC Designer imports the specified plant to the Data Browser. The following are also added to the
Data Browser:

• mpc1 — Default MPC controller created using plant as its internal model.
• scenario1 — Default simulation scenario. The results of this simulation are displayed in the

Input Response and Output Response plots.

1 Controller Creation

1-94

Define Input and Output Channel Attributes

On the MPC Designer tab, in the Structure section, click I/O Attributes.

In the Input and Output Channel Specifications dialog box, for each input and output channel:

• Specify a meaningful Name and Unit.
• Keep the Nominal Value at its default value of 0.
• Specify a Scale Factor for normalizing the signal. Select a value that approximates the predicted

operating range of the signal:

Channel Name Minimum Value Maximum Value Scale Factor
Voltage –220 V 220 V 440
Theta –π radians π radians 6.28
Torque –78.5 Nm 78.5 Nm 157

Click OK to update the channel attributes and close the dialog box.

Modify Scenario To Simulate Angular Position Step Response

In the Scenario section, Edit Scenario drop-down list, select scenario1 to modify the default
simulation scenario.

In the Simulation Scenario dialog box, specify a Simulation duration of 10 seconds.

In the Reference Signals table, keep the default configuration for the first channel. These settings
create a Step change of 1 radian in the angular position setpoint at a Time of 1 second.

 Design MPC Controller for Position Servomechanism

1-95

For the second output, in the Signal drop-down list, select Constant to keep the torque setpoint at
its nominal value.

Click OK.

The app runs the simulation with the new scenario settings and updates the Input Response and
Output Response plots.

1 Controller Creation

1-96

Specify Controller Sample Time and Horizons

On the Tuning tab, in the Horizon section, specify a Sample time of 0.1 seconds.

For the specified sample time, Ts, and a desired response time of Tr = 2 seconds, select a prediction
horizon, p, such that:

Tr ≈ pTs .

Therefore, specify a Prediction horizon of 20.

Specify a Control horizon of 5.

 Design MPC Controller for Position Servomechanism

1-97

As you update the sample time and horizon values, the Input Response and Output Response plots
update automatically. Both the input voltage and torque values exceed the constraints defined in the
system model specifications.

Specify Constraints

In the Design section, select Constraints.

In the Constraints dialog box, in the Input Constraints section, specify the Min and Max voltage
values for the manipulated variable (MV).

In the Output Constraints section, specify Min and Max torque values for the unmeasured output
(UO).

1 Controller Creation

1-98

There are no additional constraints, that is the other constraints remain at their default maximum
and minimum values, —Inf and Inf respectively

Click OK.

 Design MPC Controller for Position Servomechanism

1-99

The response plots update to reflect the new constraints. In the Input Response plot, there are
undesirable large changes in the input voltage.

Specify Tuning Weights

In the Design section, select Weights.

In the Weights dialog box, in the Input Weights table, increase the manipulated variable Rate
Weight.

1 Controller Creation

1-100

The tuning Weight for the manipulated variable (MV) is 0. This weight indicates that the controller
can allow the input voltage to vary within its constrained range. The increased Rate Weight limits
the size of manipulated variable changes.

Since the control objective is for the angular position of the load to track its setpoint, the tuning
Weight on the measured output is 1. There is no setpoint for the applied torque, so the controller can
allow the second output to vary within its constraints. Therefore, the Weight on the unmeasured
output (UO) is 0, which enables the controller to ignore the torque setpoint.

Click OK.

 Design MPC Controller for Position Servomechanism

1-101

The response plots update to reflect the increased rate weight. The Input Response is smoother
with smaller voltage changes.

Examine Output Response

In the Output Response plot, right-click the Theta plot area, and select Characteristics > Peak
Response.

1 Controller Creation

1-102

The peak output response occurs at time of 3 seconds with a maximum overshoot of 3%. Since the
reference signal step change is at 1 second, the controller has a peak time of 2 seconds.

Improve Controller Response Time

Click and drag the Closed-Loop Performance slider to the right to produce a more Aggressive
response. The further you drag the slider to the right, the faster the controller responds. Select a
slider position such that the peak response occurs at 2.7 seconds.

 Design MPC Controller for Position Servomechanism

1-103

The final controller peak time is 1.7 seconds. Reducing the response time further results in overly-
aggressive input voltage changes.

Generate and Run MATLAB Script

In the Analysis section, click the Export Controller arrow .

Under Export Controller, click Generate Script.

In the Generate MATLAB Script dialog box, check the box next to scenario1.

Click Generate Script.

The app exports a copy of the plant model, plant_C, to the MATLAB workspace, along with
simulation input and reference signals.

Additionally, the app generates the following code in the MATLAB Editor.

%% create MPC controller object with sample time
mpc1 = mpc(plant_C, 0.1);
%% specify prediction horizon
mpc1.PredictionHorizon = 20;
%% specify control horizon
mpc1.ControlHorizon = 5;

1 Controller Creation

1-104

%% specify nominal values for inputs and outputs
mpc1.Model.Nominal.U = 0;
mpc1.Model.Nominal.Y = [0;0];
%% specify scale factors for inputs and outputs
mpc1.MV(1).ScaleFactor = 440;
mpc1.OV(1).ScaleFactor = 6.28;
mpc1.OV(2).ScaleFactor = 157;
%% specify constraints for MV and MV Rate
mpc1.MV(1).Min = -220;
mpc1.MV(1).Max = 220;
%% specify constraints for OV
mpc1.OV(2).Min = -78.5;
mpc1.OV(2).Max = 78.5;
%% specify overall adjustment factor applied to weights
beta = 1.2712;
%% specify weights
mpc1.Weights.MV = 0*beta;
mpc1.Weights.MVRate = 0.4/beta;
mpc1.Weights.OV = [1 0]*beta;
mpc1.Weights.ECR = 100000;
%% specify simulation options
options = mpcsimopt();
options.RefLookAhead = 'off';
options.MDLookAhead = 'off';
options.Constraints = 'on';
options.OpenLoop = 'off';
%% run simulation
sim(mpc1, 101, mpc1_RefSignal, mpc1_MDSignal, options);

In the MATLAB Window, in the Editor tab, select Save.

Complete the Save dialog box and then click Save.

In the Editor tab, click Run.

 Design MPC Controller for Position Servomechanism

1-105

1 Controller Creation

1-106

The script creates the controller, mpc1, and runs the simulation scenario. The input and output
responses match the simulation results from the app.

Validate Controller Performance In Simulink

If you have a Simulink model of your system, you can simulate your controller and validate its
performance. Simulink functionality is not supported in MATLAB Online.

Open the model.

open_system('mpc_motor')

 Design MPC Controller for Position Servomechanism

1-107

This model uses an MPC Controller block to control a servomechanism plant. The Servomechanism
Model block is already configured to use the plant model from the MATLAB workspace.

The Angle reference source block creates a sinusoidal reference signal with a frequency of 0.4
rad/sec and an amplitude of π.

Double-click the MPC Controller block.

In the MPC Controller Block Parameters dialog box, specify an MPC Controller from the MATLAB
workspace. Use the mpc1 controller created using the generated script.

Click OK.

1 Controller Creation

1-108

At the MATLAB command line, specify a torque magnitude constraint variable.

tau = 78.5;

The model uses this value to plot the constraint limits on the torque output scope.

In the Simulink model window, click Run to simulate the model.

In the Angle scope, the output response, yellow, tracks the angular position setpoint, blue, closely.

See Also
MPC Designer | mpc | MPC Controller

More About
• “Design Controller Using MPC Designer”
• “Design MPC Controller at the Command Line”

 Design MPC Controller for Position Servomechanism

1-109

Design MPC Controller for Paper Machine Process
This example shows how to design a model predictive controller for a nonlinear paper machine
process using MPC Designer.

Plant Model

Ying et al. studied the control of consistency (percentage of pulp fibers in aqueous suspension) and
liquid level in a paper machine headbox.

The process is nonlinear and has three outputs, two manipulated inputs, and two disturbance inputs,
one of which is measured for feedforward control.

The process model is a set of ordinary differential equations (ODEs) in bilinear form. The states are

x = H1 H2 N1 N2
T

• H1 — Feed tank liquid level
• H2 — Headbox liquid level
• N1 — Feed tank consistency
• N2 — Headbox consistency

The primary control objective is to hold H2 and N2 at their setpoints by adjusting the manipulated
variables:

• Gp — Flow rate of stock entering the feed tank
• Gw — Flow rate of recycled white water

The consistency of stock entering the feed tank, Np, is a measured disturbance, and the white water
consistency, Nw, is an unmeasured disturbance.

All signals are normalized with zero nominal steady-state values and comparable numerical ranges.
The process is open-loop stable.

The measured outputs are H2, N1, and N2.

The Simulink S-function, mpc_pmmodel implements the nonlinear model equations. To view this S-
function, enter the following.

edit mpc_pmmodel

To design a controller for a nonlinear plant using MPC Designer, you must first obtain a linear
model of the plant. The paper machine headbox model can be linearized analytically.

At the MATLAB command line, enter the state-space matrices for the linearized model.

1 Controller Creation

1-110

A = [-1.9300 0 0 0
 0.3940 -0.4260 0 0
 0 0 -0.6300 0
 0.8200 -0.7840 0.4130 -0.4260];
B = [1.2740 1.2740 0 0
 0 0 0 0
 1.3400 -0.6500 0.2030 0.4060
 0 0 0 0];
C = [0 1.0000 0 0
 0 0 1.0000 0
 0 0 0 1.0000];
D = zeros(3,4);

Create a continuous-time LTI state-space model.

PaperMach = ss(A,B,C,D);

Specify the names of the input and output channels of the model.

PaperMach.InputName = {'G_p','G_w','N_p','N_w'};
PaperMach.OutputName = {'H_2','N_1','N_2'};

Specify the model time units.

PaperMach.TimeUnit = 'minutes';

Examine the open-loop response of the plant.

step(PaperMach)

 Design MPC Controller for Paper Machine Process

1-111

The step response shows that:

• Both manipulated variables, Gp and Gw, affect all three outputs.
• The manipulated variables have nearly identical effects on H2.
• The response from Gw to N2 is an inverse response.

These features make it difficult to achieve accurate, independent control of H2 and N2.

Import Plant Model and Define Signal Configuration

Open the MPC Designer app.

mpcDesigner

In MPC Designer, on the MPC Designer tab, in the Structure section, click MPC Structure.

In the Define MPC Structure By Importing dialog box, select the PaperMach plant model and assign
the plant I/O channels to the following signal types:

• Manipulated variables — Gp and Gw

• Measured disturbance — Np

• Unmeasured disturbance — Nw

• Measured outputs — H2, N2, and H2

1 Controller Creation

1-112

Tip To find the correct channel indices, click the PaperMach model Name to view additional model
details.

Click Define and Import.

The app imports the plant to the Data Browser and creates a default MPC controller using the
imported plant.

 Design MPC Controller for Paper Machine Process

1-113

Define Input and Output Channel Attributes

In the Structure section, select I/O Attributes.

In the Input and Output Channel Specifications dialog box, in the Unit column, define the units for
each channel. Since all the signals are normalized with zero nominal steady-state values, keep the
Nominal Value and Scale Factor for each channel at their default values.

Click OK to update the channel attributes and close the dialog box.

Specify Controller Sample Time and Horizons

On the Tuning tab, in the Horizon section, keep the Sample time, Prediction Horizon, and
Control Horizon at their default values.

Specify Manipulated Variable Constraints

In the Design section, click Constraints.

In the Constraints dialog box, in the Input Constraints section, specify value constraints, Min and
Max, for both manipulated variables.

1 Controller Creation

1-114

Click OK.

Specify Initial Tuning Weights

In the Design section, click Weights.

In the Weights dialog box, in the Input Weights section, increase the Rate Weight to 0.4 for both
manipulated variables.

In the Output Weights section, specify a Weight of 0 for the second output, N1, and a Weight of 1
for the other outputs.

 Design MPC Controller for Paper Machine Process

1-115

Increasing the rate weight for manipulated variables prevents overly-aggressive control actions
resulting in a more conservative controller response.

Since there are two manipulated variables, the controller cannot control all three outputs completely.
A weight of zero indicates that there is no setpoint for N1. As a result, the controller can hold H2 and
N2 at their respective setpoints.

Simulate H2 Setpoint Step Response

On the MPC Designer tab, in the Scenario section, click Edit Scenario > scenario1.

In the Simulation Scenario dialog box, specify a Simulation duration of 30 minutes.

In the Reference Signals table, in the Signal drop-down list, select Step for the first output. Keep
the step Size at 1 and specify a step Time of 0.

In the Signal drop-down lists for the other output reference signals, select Constant to hold the
values at their respective nominal values. The controller ignores the setpoint for the second output
since the corresponding tuning weight is zero.

1 Controller Creation

1-116

Click OK.

The app runs the simulation with the new scenario settings and updates the Input Response and
Output Response plots.

 Design MPC Controller for Paper Machine Process

1-117

The initial design uses a conservative control effort to produce a robust controller. The response time
for output H2 is about 7 minutes. To reduce this response time, you can decrease the sample time,
reduce the manipulated variable rate weights, or reduce the manipulated variable rate constraints.

Since the tuning weight for output N1 is zero, its output response shows a steady-state error of about
–0.25.

Adjust Weights to Emphasize Feed Tank Consistency Control

On the Tuning tab, in the Design section, select Weights.

In the Weights dialog box, in the Output Weights section, specify a Weight of 0.2 for the first
output, H2.

1 Controller Creation

1-118

The controller places more emphasis on eliminating errors in feed tank consistency, N2, which
significantly decreases the peak absolute error. The trade-off is a longer response time of about 17
minutes for the feed tank level, H2.

Test Controller Feedforward Response to Measured Disturbances

On the MPC Designer tab, in the Scenario section, click Plot Scenario > New Scenario.

In the Simulation Scenario dialog box, specify a Simulation duration of 30 minutes.

In the Measured Disturbances table, specify a step change in measured disturbance, Np, with a
Size of 1 and a step Time of 1. Keep all output setpoints constant at their nominal values.

 Design MPC Controller for Paper Machine Process

1-119

Click OK to run the simulation and display the input and output response plots.

1 Controller Creation

1-120

As shown in the NewScenario: Output plot, both H2 and N2 deviate little from their setpoints.

Experiment with Signal Previewing

In the Data Browser, in the Scenarios section, right-click NewScenario, and select Edit.

In the Simulation Scenario dialog box, in the Simulation Settings section, check the Preview
measured disturbances option.

Click Apply.

 Design MPC Controller for Paper Machine Process

1-121

The manipulated variables begin changing before the measured disturbance occurs because the
controller uses the known future disturbance value when computing its control action. The output
disturbance values also begin changing before the disturbance occurs, which reduces the magnitude
of the output errors. However, there is no significant improvement over the previous simulation
result.

In the Simulation Scenario dialog box, clear the Preview measured disturbances option.

Click OK.

Rename Scenarios

With multiple scenarios, it is helpful to provide them with meaningful names. In the Data Browser,
in the Scenarios section, double-click each scenario to rename them as shown:

1 Controller Creation

1-122

Test Controller Feedback Response to Unmeasured Disturbances

In the Data Browser, in the Scenarios section, right-click Feedforward,and select Copy.

Double-click the new scenario, and rename it Feedback.

Right-click the Feedback scenario, and select Edit.

In the Simulation Scenario dialog box, in the Measured Disturbances table, in the Signal drop-
down list, select Constant to remove the measured disturbance.

In the Unmeasured Disturbances table, in the Signal drop-down list, select Step to simulate a
sudden, sustained unmeasured input disturbance.

Set the step Size to 1 and the step Time to 1.

 Design MPC Controller for Paper Machine Process

1-123

Click OK to update the scenario settings, and run the simulation.

In the Data Browser, in the Scenarios section, right-click Feedback, and select Plot.

The controlled outputs, H2 and N2, both exhibit relatively small deviations from their setpoints. The
settling time is longer than for the original servo response, which is typical.

On the Tuning tab, in the Analysis section, click Review Design to check the controller for potential
run-time stability or numerical problems.

The review report opens in a new window.

1 Controller Creation

1-124

The review flags two warnings about the controller design. Click the warning names to determine
whether they indicate problems with the controller design.

The Closed-Loop Steady-State Gains warning indicates that the plant has more controlled outputs
than manipulated variables. This input/output imbalance means that the controller cannot eliminate
steady-state error for all of the outputs simultaneously. To meet the control objective of tracking the
setpoints of H2 and N2, you previously set the output weight for N1 to zero. This setting causes the QP
Hessian Matrix Validity warning, which indicates that one of the output weights is zero.

Since the input/output imbalance is a known feature of the paper machine plant model, and you
intentionally set one of the output weights to zero to correct for the imbalance, neither warning
indicates an issue with the controller design.

Export Controller to MATLAB Workspace

On the MPC Designer tab, in the Result section, click Export Controller .

In the Export Controller dialog box, check the box in the Select column.

In the Export As column, specify MPC1 as the controller name.

 Design MPC Controller for Paper Machine Process

1-125

Click Export to save a copy of the controller to the MATLAB workspace.

Open and Simulate Simulink Model

If you have a Simulink model of your system, you can simulate your controller and validate its
performance. Simulink functionality is not supported in MATLAB Online.

Open the model.

open_system('mpc_papermachine')

The MPC Controller block controls the nonlinear paper machine plant model, which is defined using
the S-Function mpc_pmmodel.

The model is configured to simulate a sustained unmeasured disturbance of size 1.

Double-click the MPC Controller block.

1 Controller Creation

1-126

The MPC Controller block is already configured to use the MPC1 controller that was previously
exported to the MATLAB workspace.

Also, the Measured disturbance option is selected to add the md inport to the controller block.

Simulate the model.

 Design MPC Controller for Paper Machine Process

1-127

In the Outputs plot, the responses are almost identical to the responses from the corresponding
simulation in MPC Designer. The yellow curve is H2, the blue is N1, and the red is N2.

1 Controller Creation

1-128

Similarly, in the MVs scope, the manipulated variable moves are almost identical to the moves from
corresponding simulation in MPC Designer. The yellow curve is Gp and the blue is Gw.

These results show that there are no significant prediction errors due to the mismatch between the
linear prediction model of the controller and the nonlinear plant. Even increasing the unmeasured
disturbance magnitude by a factor of four produces similarly shaped response curves. However, as
the disturbance size increases further, the effects of nonlinearities become more pronounced.

Increase Unmeasured Disturbance Magnitude

In the Simulink model window, double-click the Unmeasured Disturbance block.

In the Unmeasured Disturbance properties dialog box, specify a Constant value of 6.5.

Click OK.

Simulate the model.

 Design MPC Controller for Paper Machine Process

1-129

1 Controller Creation

1-130

The mismatch between the prediction model and the plant now produces output responses with
significant differences. Increasing the disturbance magnitude further results in large setpoint
deviations and saturated manipulated variables.

References
[1] Ying, Y., M. Rao, and Y. Sun "Bilinear control strategy for paper making process," Chemical

Engineering Communications (1992), Vol. 111, pp. 13–28.

See Also
MPC Designer | MPC Controller

More About
• “Design Controller Using MPC Designer”

 Design MPC Controller for Paper Machine Process

1-131

Control of an Inverted Pendulum on a Cart
This example uses a model predictive controller (MPC) to control an inverted pendulum on a cart.

Product Requirement

This example requires Simulink® Control Design™ software to define the MPC structure by
linearizing a nonlinear Simulink model.

if ~mpcchecktoolboxinstalled('slcontrol')
 disp('Simulink Control Design is required to run this example.')
 return
end

Pendulum/Cart Assembly

The plant for this example is the following cart/pendulum assembly, where x is the cart position and
theta is the pendulum angle.

This system is controlled by exerting a variable force F on the cart. The controller needs to keep the
pendulum upright while moving the cart to a new position or when the pendulum is nudged forward
by an impulse disturbance dF applied at the upper end of the inverted pendulum.

This plant is modeled in Simulink with commonly used blocks.

1 Controller Creation

1-132

mdlPlant = 'mpc_pendcartPlant';
load_system(mdlPlant)
open_system([mdlPlant '/Pendulum and Cart System'],'force')

Control Objectives

Assume the following initial conditions for the cart/pendulum assembly:

• The cart is stationary at x = 0.

• The inverted pendulum is stationary at the upright position theta = 0.

The control objectives are:

• Cart can be moved to a new position between -10 and 10 with a step setpoint change.

• When tracking such a setpoint change, the rise time should be less than 4 seconds (for
performance) and the overshoot should be less than 5 percent (for robustness).

• When an impulse disturbance of magnitude of 2 is applied to the pendulum, the cart should return
to its original position with a maximum displacement of 1. The pendulum should also return to the
upright position with a peak angle displacement of 15 degrees (0.26 radian).

The upright position is an unstable equilibrium for the inverted pendulum, which makes the control
task more challenging.

 Control of an Inverted Pendulum on a Cart

1-133

Control Structure

For this example, use a single MPC controller with:

• One manipulated variable: Variable force F.
• Two measured outputs: Cart position x and pendulum angle theta.
• One unmeasured disturbance: Impulse disturbance dF.

mdlMPC = 'mpc_pendcartImplicitMPC';
open_system(mdlMPC)

Although cart velocity x_dot and pendulum angular velocity theta_dot are available from the plant
model, to make the design case more realistic, they are excluded as MPC measurements.

While the cart position setpoint varies (step input), the pendulum angle setpoint is constant (0 =
upright position).

Linear Plant Model

Since the MPC controller requires a linear time-invariant (LTI) plant model for prediction, linearize
the Simulink plant model at the initial operating point.

Specify linearization input and output points.

io(1) = linio([mdlPlant '/dF'],1,'openinput');
io(2) = linio([mdlPlant '/F'],1,'openinput');
io(3) = linio([mdlPlant '/Pendulum and Cart System'],1,'openoutput');
io(4) = linio([mdlPlant '/Pendulum and Cart System'],3,'openoutput');

Create operating point specifications for the plant initial conditions.

opspec = operspec(mdlPlant);

1 Controller Creation

1-134

The first state is cart position x, which has a known initial state of 0.

opspec.States(1).Known = true;
opspec.States(1).x = 0;

The third state is pendulum angle theta, which has a known initial state of 0.

opspec.States(3).Known = true;
opspec.States(3).x = 0;

Compute operating point using these specifications.

options = findopOptions('DisplayReport',false);
op = findop(mdlPlant,opspec,options);

Obtain the linear plant model at the specified operating point.

plant = linearize(mdlPlant,op,io);
plant.InputName = {'dF';'F'};
plant.OutputName = {'x';'theta'};

Examine the poles of the linearized plant.

pole(plant)

ans =

 0
 -11.9115
 -3.2138
 5.1253

The plant has an integrator and an unstable pole.

bdclose(mdlPlant)

MPC Design

The plant has two inputs, dF and F, and two outputs, x and theta. In this example, dF is specified as
an unmeasured disturbance used by the MPC controller for better disturbance rejection. Set the plant
signal types.

plant = setmpcsignals(plant,'ud',1,'mv',2);

To control an unstable plant, the controller sample time cannot be too large (poor disturbance
rejection) or too small (excessive computation load). Similarly, the prediction horizon cannot be too
long (the plant unstable mode would dominate) or too short (constraint violations would be
unforeseen). Use the following parameters for this example:

Ts = 0.01;
PredictionHorizon = 50;
ControlHorizon = 5;
mpcobj = mpc(plant,Ts,PredictionHorizon,ControlHorizon);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

 Control of an Inverted Pendulum on a Cart

1-135

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
 for output(s) y1 and zero weight for output(s) y2

There is a limitation on how much force can be applied to the cart, which is specified as hard
constraints on manipulated variable F.

mpcobj.MV.Min = -200;
mpcobj.MV.Max = 200;

It is good practice to scale plant inputs and outputs before designing weights. In this case, since the
range of the manipulated variable is greater than the range of the plant outputs by two orders of
magnitude, scale the MV input by 100.

mpcobj.MV.ScaleFactor = 100;

To improve controller robustness, increase the weight on the MV rate of change from 0.1 to 1.

mpcobj.Weights.MVRate = 1;

To achieve balanced performance, adjust the weights on the plant outputs. The first weight is
associated with cart position x and the second weight is associated with angle theta.

mpcobj.Weights.OV = [1.2 1];

To achieve more aggressive disturbance rejection, increase the state estimator gain by multiplying
the default disturbance model gains by a factor of 10.

Update the input disturbance model.

disturbance_model = getindist(mpcobj);
setindist(mpcobj,'model',disturbance_model*10);

-->Converting model to discrete time.
-->The "Model.Disturbance" property of "mpc" object is empty:
 Assuming unmeasured input disturbance #1 is integrated white noise.
 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Update the output disturbance model.

disturbance_model = getoutdist(mpcobj);
setoutdist(mpcobj,'model',disturbance_model*10);

-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Closed-Loop Simulation

Validate the MPC design with a closed-loop simulation in Simulink.

open_system([mdlMPC '/Scope'])
sim(mdlMPC)

-->Converting model to discrete time.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

1 Controller Creation

1-136

 Control of an Inverted Pendulum on a Cart

1-137

In the nonlinear simulation, all the control objectives are successfully achieved.

Discussion

It is important to point out that the designed MPC controller has its limitations. For example, if you
increase the step setpoint change to 15, the pendulum fails to recover its upright position during the
transition.

To reach the longer distance within the same rise time, the controller applies more force to the cart
at the beginning. As a result, the pendulum is displaced from its upright position by a larger angle
such as 60 degrees. At such angles, the plant dynamics differ significantly from the LTI predictive
model obtained at theta = 0. As a result, errors in the prediction of plant behavior exceed what the
built-in MPC robustness can handle, and the controller fails to perform properly.

A simple workaround to avoid the pendulum falling is to restrict pendulum displacement by adding
soft output constraints to theta and reducing the ECR weight on constraint softening.

mpcobj.OV(2).Min = -pi/2;
mpcobj.OV(2).Max = pi/2;
mpcobj.Weights.ECR = 100;

However, with these new controller settings, it is no longer possible to reach the longer distance
within the required rise time. In other words, controller performance is sacrificed to avoid violation of
soft output constraints.

To reach longer distances within the same rise time, the controller needs more accurate models at
different angle to improve prediction. Another example “Gain-Scheduled MPC Control of an Inverted
Pendulum on a Cart” on page 8-58 shows how to use gain scheduling MPC to achieve the longer
distances.

1 Controller Creation

1-138

Close the Simulink model.

bdclose(mdlMPC)

See Also

More About
• “Explicit MPC Control of an Inverted Pendulum on a Cart” on page 6-33
• “Gain-Scheduled MPC Control of an Inverted Pendulum on a Cart” on page 8-58

 Control of an Inverted Pendulum on a Cart

1-139

Thermo-Mechanical Pulping Process with Multiple Control
Objectives

This example shows how to control a thermo-mechanical pulping (TMP) plant with a model predictive
controller.

Plant Description

The following diagram shows a typical process arrangement for a two stage TMP operation. Two
pressured refiners operate in sequence to produce a mechanical pulp suitable for making newsprint.

The primary objective of controlling the TMP plant is to regulate the energy applied to the pulp by
the electric motors which drive each refiner to derive pulp with good physical properties without
incurring excess energy costs.

The secondary control objective is to regulate the ratio of dry mass flow rate to overall mass flow rate
(known as consistency) measured at the outlet of each refiner.

In practice, these objectives amount to regulating the primary and secondary refiner motor loads, and
the primary and secondary refiner constancies, subject to the following output constraints:

(1) Maintain the power on each refiner below the maximum rated values.

(2) Maintain the vibration level on the two refiners below a critical level to prevent refiner plate
clash.

(3) Limit the measured consistency to prevent blow line plugging and fiber damage.

The manipulated variables for this plant include:

• Gap controller setpoints for regulating the distance between the refiner plates
• Dilution flow rates to the two refiners
• RPM of the screw feeder

Physical limits are also imposed on each of these inputs.

1 Controller Creation

1-140

Modeling of the TMP Plant in Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end

The following Simulink® model represents a TMP plant and an MPC Controller designed for the
control objectives described above. The model is opened and plant data is initialized:

open_system('mpc_tmpdemo')
mpctmpinit;

 Thermo-Mechanical Pulping Process with Multiple Control Objectives

1-141

The MPC controller is represented by an MPC object in the workspace. It is loaded from a previously
saved design:

load mpc_tmpdemodata;
mpcobj

MPC object (created on 30-Mar-2004 17:20:31):

Sampling time: 0.5 (seconds)
Prediction Horizon: 20
Control Horizon: 5

Plant Model:

 5 manipulated variable(s) -->| 7 states |
 | |--> 6 measured output(s)
 0 measured disturbance(s) -->| 5 inputs |
 | |--> 0 unmeasured output(s)
 0 unmeasured disturbance(s) -->| 6 outputs |

1 Controller Creation

1-142

Disturbance and Noise Models:
 Output disturbance model: user specified (type "getoutdist(mpcobj)" for details)
 Measurement noise model: user specified (type "mpcobj.Model.Noise" for details)

Weights:
 ManipulatedVariables: [0 0 0 0 0]
 ManipulatedVariablesRate: [0.1000 10 0.1000 10 0.1000]
 OutputVariables: [0 10 0 1 10 1]
 ECR: 1000000

State Estimation: Default Kalman Filter (type "getEstimator(mpcobj)" for details)

Constraints:
 0 <= Feed rpm <= 35, -10 <= Feed rpm/rate <= Inf, -Inf <= Pri. vibration <= 1
 0 <= Pri. gap set point <= 1, -10 <= Pri. gap set point/rate <= Inf, -Inf <= Pri. consistency <= 0.45
 70 <= Pri. dil. flow set point <= 250, -10 <= Pri. dil. flow set point/rate <= Inf, -Inf <= Sec. vibration <= 1

 70 <= Sec. dil flow set point <= 250, -10 <= Sec. dil flow set point/rate <= Inf, -Inf <= Sec. motor load <= 9

The controller was designed using the MPC Designer app.

Tuning the Controller Using the MPC Designer App

Click the "Design" button in the MPC Controller block dialog to launch the MPC Designer app.

 Thermo-Mechanical Pulping Process with Multiple Control Objectives

1-143

In the Tuning tab, click Weights to open the Weights dialog box. To put more emphasis on regulating
primary and secondary refiner motor loads and constancies, specify the input and output weights as
follows:

In the MPC Designer tab, click Edit Scenario to open the Simulation Scenario dialog box. To simulate
a primary refiner motor load setpoint change from 8 to 9 MW without a model mismatch, specify the
simulation scenario settings as follows:

1 Controller Creation

1-144

The effect of design changes can be observed immediately in the response plots.

 Thermo-Mechanical Pulping Process with Multiple Control Objectives

1-145

Simulating the Design in Simulink®

The controller can be tested on the non-linear plant by running the simulation in Simulink®. In the
Tuning tab, in the Update and Simulate drop-down list, select Update Block and Run Simulation to
export the current controller design to the MATLAB workspace and run the simulation in Simulink.

The output of the 3 scopes show the response to initial setpoints with:

• Primary consistency of 0.4
• Secondary motor load of 6 MW
• Secondary consistency of 0.3

1 Controller Creation

1-146

bdclose('mpc_tmpdemo')

See Also
mpc | MPC Controller | MPC Designer

More About
• “Design MPC Controller in Simulink”

 Thermo-Mechanical Pulping Process with Multiple Control Objectives

1-147

MPC Control of an Aircraft with Unstable Poles
This example shows how to use an MPC controller to control an unstable aircraft with saturating
actuators.

For an example that controls the same plant using an explicit MPC controller, see “Explicit MPC
Control of an Aircraft with Unstable Poles” on page 6-17.

Define Aircraft Model

The linearized open-loop model of the aircraft longitudinal dynamics has the following state-space
matrices:

A = [-0.0151 -60.5651 0 -32.174;
 -0.0001 -1.3411 0.9929 0;
 0.00018 43.2541 -0.86939 0;
 0 0 1 0];
B = [-2.516 -13.136;
 -0.1689 -0.2514;
 -17.251 -1.5766;
 0 0];
C = [0 1 0 0;
 0 0 0 1];
D = [0 0;
 0 0];

Create the plant, and specify the initial states as zero.

plant = ss(A,B,C,D);
x0 = zeros(4,1);

The manipulated variables are the elevator and flaperon angles. The attack and pitch angles are
measured outputs to be regulated.

The open-loop response of the system is unstable.

pole(plant)

ans =

 -7.6636 + 0.0000i
 5.4530 + 0.0000i
 -0.0075 + 0.0556i
 -0.0075 - 0.0556i

Specify Controller Constraints

Both manipulated variables are constrained between +/- 25 degrees. Since the plant inputs and
outputs are of different orders of magnitude, you also use scale factors to facilitate MPC tuning.
Typical choices of scale factor are the upper/lower limit or the operating range.

MV = struct('Min',{-25,-25},'Max',{25,25},'ScaleFactor',{50,50});

Both plant outputs have constraints to limit undershoots at the first prediction horizon. You also
specify scale factors for outputs.

1 Controller Creation

1-148

OV = struct('Min',{[-0.5;-Inf],[-100;-Inf]},...
 'Max',{[0.5;Inf],[100;Inf]},...
 'ScaleFactor',{1,200});

Specify Controller Tuning Weights

The control task is to get zero offset for piecewise-constant references, while avoiding instability due
to input saturation. Because both MV and OV variables are already scaled in MPC controller, MPC
weights are dimensionless and applied to the scaled MV and OV values. In this example, you penalize
the two outputs equally with the same OV weights.

Weights = struct('MV',[0 0],'MVRate',[0.1 0.1],'OV',[10 10]);

Create MPC Controller

Create an MPC controller with the specified plant model, sample time, and horizons.

Ts = 0.05; % Sample time
p = 10; % Prediction horizon
m = 2; % Control horizon
mpcobj = mpc(plant,Ts,p,m,Weights,MV,OV);

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end

Simulate closed-loop control of the linear plant model in Simulink. To do so, for the MPC Controller
block, set the MPC Controller property to mpcobj.

mdl = 'mpc_aircraft';
open_system(mdl)
sim(mdl)

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 MPC Control of an Aircraft with Unstable Poles

1-149

1 Controller Creation

1-150

The closed-loop response shows good setpoint tracking performance.

References

[1] P. Kapasouris, M. Athans, and G. Stein, "Design of feedback control systems for unstable plants
with saturating actuators", Proc. IFAC Symp. on Nonlinear Control System Design, Pergamon Press,
pp.302--307, 1990

[2] A. Bemporad, A. Casavola, and E. Mosca, "Nonlinear control of constrained linear systems via
predictive reference management", IEEE® Trans. Automatic Control, vol. AC-42, no. 3, pp. 340-349,
1997.

bdclose(mdl)

See Also
mpc | MPC Controller

More About
• “Design MPC Controller at the Command Line”

 MPC Control of an Aircraft with Unstable Poles

1-151

Model Predictive Control Basics

• “Controller State Estimation” on page 2-2
• “Optimization Problem” on page 2-7
• “QP Solvers” on page 2-17

2

Controller State Estimation

Controller State Variables
As the controller operates, it uses its current state, xc, as the basis for predictions. By definition, the
state vector is the following:

xc
T k = xp

T(k) xid
T (k) xod

T (k) xn
T(k) .

Here,

• xc is the controller state, comprising nxp + nxid + nxod + nxn state variables.
• xp is the plant model state vector, of length nxp.
• xid is the input disturbance model state vector, of length nxid.
• xod is the output disturbance model state vector, of length nxod.
• xn is the measurement noise model state vector, of length nxn.

Thus, the variables comprising xc represent the models appearing in the following diagram of the
MPC system.

Some of the state vectors may be empty. If not, they appear in the sequence defined within each
model.

By default, the controller updates its state automatically using the latest plant measurements. See
“State Estimation” on page 2-3 for details. Alternatively, the custom state estimation feature allows
you to update the controller state using an external procedure, and then supply these values to the
controller. See “Custom State Estimation” on page 3-32 for details.

2 Model Predictive Control Basics

2-2

State Observer
Combination of the models shown in the diagram yields the state observer:

xc k + 1 = Axc k + Buo k
y k = Cxc k + Duo k .

MPC controller uses the state observer in the following ways:

• To estimate values of unmeasured states needed as the basis for predictions (see “State
Estimation” on page 2-3).

• To predict how the controller’s proposed manipulated variable (MV) adjustments will affect future
plant output values (see “Output Variable Prediction” on page 2-5).

The observer’s input signals are the dimensionless plant manipulated and measured disturbance
inputs, and the white noise inputs to the disturbance and noise models:

uo
T k = uT k vT k wid

T k wod
T k wn

T k .

The observer’s outputs are the ny dimensionless plant outputs.

In terms of the parameters defining the four models shown in the diagram, the observer’s parameters
are:

A =

Ap BpdCid 0 0
0 Aid 0 0
0 0 Aod 0
0 0 0 An

, B =

Bpu Bpv BpdDid 0 0
0 0 Bid 0 0
0 0 0 Bod 0
0 0 0 0 Bn

C = Cp DpdCid Cod
Cn
0

, D = 0 Dpv DpdDid Dod
Dn
0

.

,

Here, the plant and output disturbance models are resequenced so that the measured outputs
precede the unmeasured outputs.

State Estimation
In general, the controller states are unmeasured and must be estimated. By default, the controller
uses a steady-state Kalman filter that derives from the state observer.

At the beginning of the kth control interval, the controller state is estimated with the following steps:

1 Obtain the following data:

• xc(k|k–1) — Controller state estimate from previous control interval, k–1
• uact(k–1) — Manipulated variable (MV) actually used in the plant from k–1 to k (assumed

constant)
• uopt(k–1) — Optimal MV recommended by MPC and assumed to be used in the plant from k–1

to k
• v(k) — Current measured disturbances

 Controller State Estimation

2-3

• ym(k) — Current measured plant outputs
• Bu, Bv — Columns of observer parameter B corresponding to u(k) and v(k) inputs
• Cm — Rows of observer parameter C corresponding to measured plant outputs
• Dmv — Rows and columns of observer parameter D corresponding to measured plant outputs

and measured disturbance inputs
• L, M — Constant Kalman gain matrices

Plant input and output signals are scaled to be dimensionless prior to use in calculations.
2 Revise xc(k|k–1) when uact(k–1) and uopt(k–1) are different.

xc
rev k |k− 1 = xc k |k− 1 + Bu uact k− 1 − uopt k− 1

3 Compute the innovation.

e k = ym k − Cmxc
rev k |k− 1 + Dmvv k

4 Update the controller state estimate to account for the latest measurements.

xc k |k = xc
rev k |k− 1 + Me k

Then, the software uses the current state estimate xc(k|k) to solve the quadratic program at
interval k. The solution is uopt(k), the MPC-recommended manipulated-variable value to be used
between control intervals k and k+1.

Finally, the software prepares for the next control interval assuming that the unknown inputs,
wid(k), wod(k), and wn(k) assume their mean value (zero) between times k and k+1. The software
predicts the impact of the known inputs and the innovation as follows:

xc k + 1 k = Axc
rev k k− 1 + Buuopt k + Bvv k + Le k

Built-in Steady-State Kalman Gains Calculation
Model Predictive Control Toolbox software uses the kalman command to calculate Kalman estimator
gains L and M. The following assumptions apply:

• State observer parameters A, B, C, D are time-invariant.
• Controller states, xc, are detectable. (If not, or if the observer is numerically close to

undetectability, the Kalman gain calculation fails, generating an error message.)
• Stochastic inputs wid(k), wod(k), and wn(k) are independent white noise, each with zero mean and

identity covariance.
• Additional white noise wu(k) and wv(k) with the same characteristics adds to the dimensionless

u(k) and v(k) inputs respectively. This improves estimator performance in certain cases, such as
when the plant model is open-loop unstable.

Without loss of generality, set the u(k) and v(k) inputs to zero. The effect of the stochastic inputs on
the controller states and measured plant outputs is:

xc k + 1 = Axc k + Bw k
ym k = Cmxc k + Dmw k .

Here,

2 Model Predictive Control Basics

2-4

wT k = wu
T k wv

T k wid
T k wod

T k wn
T k .

Inputs to the kalman command are the state observer parameters A, Cm, and the following
covariance matrices:

Q = E BwwTBT = BBT

R = E DmwwTDm
T = DmDm

T

N = E BwwTDm
T = BDm

T .

Here, E{...} denotes the expectation.

Output Variable Prediction
Model Predictive Control requires prediction of noise-free future plant outputs used in optimization.
This is a key application of the state observer (see “State Observer” on page 2-3).

In control interval k, the required data are as follows:

• p — Prediction horizon (number of control intervals, which is greater than or equal to 1)
• xc(k|k) — Controller state estimates (see “State Estimation” on page 2-3)
• v(k) — Current measured disturbance inputs (MDs)
• v(k+i|k) — Projected future MDs, where i=1:p–1. If you are not using MD previewing, then v(k+i|

k) = v(k).
• A, Bu, Bv, C, Dv — State observer constants, where Bu, Bv, and Dv denote columns of the B and D

matrices corresponding to inputs u and v. Du is a zero matrix because of no direct feedthrough

Predictions assume that unknown white noise inputs are zero (their expectation). Also, the predicted
plant outputs are to be noise-free. Thus, all terms involving the measurement noise states disappear
from the state observer equations. This is equivalent to zeroing the last nxn elements of xc(k|k).

Given the above data and simplifications, for the first step the state observer predicts:

xc k + 1 |k = Axc k |k + Buu k |k + Bvv k .

Continuing for successive steps, i = 2:p, the state observer predicts:

xc k + i |k = Axc k + i− 1 |k + Buu k + i− 1 |k + Bvv k + i− 1 |k .

At any step, i = 1:p, the predicted noise-free plant outputs are:

y k + i k = Cxc k + i k + Dvv k + i k .

All of these equations employ dimensionless plant input and output variables. See “Specify Scale
Factors” on page 1-29. The equations also assume zero offsets. Inclusion of nonzero offsets is
straightforward.

For faster computations, the MPC controller uses an alternative form of the above equations in which
constant terms are computed and stored during controller initialization. See “QP Matrices” on page
2-11.

 Controller State Estimation

2-5

See Also
kalman

More About
• “MPC Prediction Models”
• “Optimization Problem” on page 2-7
• “Custom State Estimation” on page 3-32
• “Implement Custom State Estimator Equivalent to Built-In Kalman Filter” on page 3-37

2 Model Predictive Control Basics

2-6

Optimization Problem

Overview
Model predictive control solves an optimization problem – specifically, a quadratic program (QP) – at
each control interval. The solution determines the manipulated variables (MVs) to be used in the
plant until the next control interval.

This QP problem includes the following features:

• The objective, or "cost", function — A scalar, nonnegative measure of controller performance to be
minimized.

• Constraints — Conditions the solution must satisfy, such as physical bounds on MVs and plant
output variables.

• Decision — The MV adjustments that minimize the cost function while satisfying the constraints.

The following sections describe these features in more detail.

Standard Cost Function
The standard cost function is the sum of four terms, each focusing on a particular aspect of controller
performance, as follows:

J zk = Jy zk + Ju zk + JΔu zk + Jε zk .

Here, zk is the QP decision. As described below, each term includes weights that help you balance
competing objectives. While the MPC controller provides default weights, you will usually need to
adjust them to tune the controller for your application.

Output Reference Tracking

In most applications, the controller must keep selected plant outputs at or near specified reference
values. An MPC controller uses the following scalar performance measure for output reference
tracking:

Jy zk =∑ j = 1

ny ∑i = 1

p wi, j
y

s j
y r j k + i |k − y j k + i |k

2

.

Here,

• k — Current control interval.
• p — Prediction horizon (number of intervals).
• ny — Number of plant output variables.
• zk — QP decision, given by:

zk
T = u(k k)T u(k + 1 k)T ⋯ u(k + p− 1 k)T εk .

• yj(k+i|k) — Predicted value of jth plant output at ith prediction horizon step, in engineering units.
• rj(k+i|k) — Reference value for jth plant output at ith prediction horizon step, in engineering units.

 Optimization Problem

2-7

• s j
y — Scale factor for jth plant output, in engineering units.

• wi, j
y — Tuning weight for jth plant output at ith prediction horizon step (dimensionless).

The values ny, p, s j
y, and wi, j

y are constant controller specifications. The controller receives reference
values, rj(k+i|k), for the entire prediction horizon. The controller uses the state observer to predict
the plant outputs, yj(k+i|k), which depend on manipulated variable adjustments (zk), measured
disturbances (MD), and state estimates. At interval k, the controller state estimates and MD values
are available. Therefore, Jy is a function of zk only.

Manipulated Variable Tracking

In some applications, such as when there are more manipulated variables than plant outputs, the
controller must keep selected manipulated variables (MVs) at or near specified target values. An MPC
controller uses the following scalar performance measure for manipulated variable tracking:

Ju(zk) =∑ j = 1

nu ∑i = 0

p− 1
wi, j

u

s j
u u j k + i |k − u j, target k + i |k

2
.

Here,

• k — Current control interval.
• p — Prediction horizon (number of intervals).
• nu — Number of manipulated variables.
• zk — QP decision, given by:

zk
T = u(k k)T u(k + 1 k)T ⋯ u(k + p− 1 k)T εk .

• uj,target(k+i|k) — Target value for jth MV at ith prediction horizon step, in engineering units.
• s j

u — Scale factor for jth MV, in engineering units.

• wi, j
u — Tuning weight for jth MV at ith prediction horizon step (dimensionless).

The values nu, p, s j
u, and wi, j

u are constant controller specifications. The controller receives uj,target(k+i|
k) values for the entire horizon. The controller uses the state observer to predict the plant outputs.
Thus, Ju is a function of zk only.

Manipulated Variable Move Suppression

Most applications prefer small MV adjustments (moves). An MPC constant uses the following scalar
performance measure for manipulated variable move suppression:

JΔu(zk) =∑
j = 1

nu

∑
i = 0

p− 1
wi, j

Δu

s j
u u j k + i |k − u j k + i− 1 |k

2
.

Here,

• k — Current control interval.

2 Model Predictive Control Basics

2-8

• p — Prediction horizon (number of intervals).
• nu — Number of manipulated variables.
• zk — QP decision, given by:

zk
T = u(k k)T u(k + 1 k)T ⋯ u(k + p− 1 k)T εk .

• s j
u — Scale factor for jth MV, in engineering units.

• wi, j
Δu — Tuning weight for jth MV movement at ith prediction horizon step (dimensionless).

The values nu, p, s j
u, and wi, j

Δu are constant controller specifications. u(k–1|k) = u(k–1), which are the
known MVs from the previous control interval. JΔu is a function of zk only.

In addition, a control horizon m < p (or MV blocking) constrains certain MV moves to be zero.

Constraint Violation

In practice, constraint violations might be unavoidable. Soft constraints allow a feasible QP solution
under such conditions. An MPC controller employs a dimensionless, nonnegative slack variable, εk,
which quantifies the worst-case constraint violation. (See “Constraints” on page 2-10) The
corresponding performance measure is:

Jε zk = ρεεk
2 .

Here,

• zk — QP decision, given by:

zk
T = u(k k)T u(k + 1 k)T ⋯ u(k + p− 1 k)T εk .

• εk — Slack variable at control interval k (dimensionless).
• ρε — Constraint violation penalty weight (dimensionless).

Alternative Cost Function
You can elect to use the following alternative to the standard cost function:

J zk =∑i = 0

p− 1

ey
T k + i Qey k + i + eu

T k + i Rueu k + i + ΔuT k + i RΔuΔu k + i + ρϵεk
2 .

Here, Q (ny-by-ny), Ru, and RΔu (nu-by-nu) are positive-semi-definite weight matrices, and:

ey i + k = Sy
−1 r k + i + 1|k − y(k + i + 1 k)

eu i + k = Su
−1 utarget k + i|k − u(k + i k)

Δu k + i = Su
−1 u k + i|k − u(k + i− 1 k) .

Also,

• Sy — Diagonal matrix of plant output variable scale factors, in engineering units.
• Su — Diagonal matrix of MV scale factors in engineering units.

 Optimization Problem

2-9

• r(k+1|k) — ny plant output reference values at the ith prediction horizon step, in engineering
units.

• y(k+1|k) — ny plant outputs at the ith prediction horizon step, in engineering units.
• zk — QP decision, given by:

zk
T = u(k k)T u(k + 1 k)T ⋯ u(k + p− 1 k)T εk .

• utarget(k+i|k) — nu MV target values corresponding to u(k+i|k), in engineering units.

Output predictions use the state observer, as in the standard cost function.

The alternative cost function allows off-diagonal weighting, but requires the weights to be identical at
each prediction horizon step.

The alternative and standard cost functions are identical if the following conditions hold:

• The standard cost functions employs weights wi, j
y , wi, j

u , and wi, j
Δu that are constant with respect to

the index, i = 1:p.
• The matrices Q, Ru, and RΔu are diagonal with the squares of those weights as the diagonal

elements.

Constraints
Certain constraints are implicit. For example, a control horizon m < p (or MV blocking) forces some
MV increments to be zero, and the state observer used for plant output prediction is a set of implicit
equality constraints. Explicit constraints that you can configure are described below.

Bounds on Plant Outputs, MVs, and MV Increments

The most common MPC constraints are bounds, as follows.

y j, min i
s j

y − εkV j, min
y i ≤

y j k + i|k
s j

y ≤
y j, max i

s j
y + εkV j, max

y (i), i = 1:p, j = 1:ny

u j, min i
s j

u − εkV j, min
u (i) ≤

u j k + i− 1|k
s j

u ≤
u j, max i

s j
u + εkV j, max

u (i), i = 1:p, j = 1:nu

Δu j, min i
s j

u − εkV j, min
Δu (i) ≤

Δu j k + i− 1|k
s j

u ≤
Δu j, max i

s j
u + εkV j, max

Δu (i), i = 1:p, j = 1:nu .

Here, the V parameters (ECR values) are dimensionless controller constants analogous to the cost
function weights but used for constraint softening (see “Constraint Softening” on page 1-7). Also,

• εk — Scalar QP slack variable (dimensionless) used for constraint softening.
• s j

y — Scale factor for jth plant output, in engineering units.

• s j
u — Scale factor for jth MV, in engineering units.

• yj,min(i), yj,max(i) — lower and upper bounds for jth plant output at ith prediction horizon step, in
engineering units.

• uj,min(i), uj,max(i) — lower and upper bounds for jth MV at ith prediction horizon step, in engineering
units.

2 Model Predictive Control Basics

2-10

• Δuj,min(i), Δuj,max(i) — lower and upper bounds for jth MV increment at ith prediction horizon step,
in engineering units.

Except for the slack variable non-negativity condition, all of the above constraints are optional and
are inactive by default (i.e., initialized with infinite limiting values). To include a bound constraint,
you must specify a finite limit when you design the controller.

QP Matrices
This section describes the matrices associated with the model predictive control optimization
problem described in “Optimization Problem” on page 2-7.

Prediction

Assume that the disturbance models described in “Input Disturbance Model” are unit gains; that is,
d(k) = nd(k) is white Gaussian noise. You can denote this problem as

x
x
xd

, A
A BdC

0 A
, Bu

Bu
0

, Bv
Bv
0

, Bd
BdD

B
, C C DdC

Then, the prediction model is:

x(k+1) = Ax(k) +Buu(k) +Bvv(k)+Bdnd(k)

y(k) = Cx(k) +Dvv(k) +Ddnd(k)

Next, consider the problem of predicting the future trajectories of the model performed at time k=0.
Set nd(i)=0 for all prediction instants i, and obtain

y(i 0) = C Aix(0) + ∑
h = 0

i− 1
Ai− 1 Bu u(− 1) + ∑

j = 0

h
Δu(j) + Bvv(h) + Dvv(i)

This equation gives the solution

y(1)
⋯

y(p)
= Sxx(0) + Su1u(− 1) + Su

Δu(0)
⋯

Δu(p− 1)
+ Hv

v(0)
⋯

v(p)

where

 Optimization Problem

2-11

Sx =

CA

CA2

⋯
CAp

∈ ℜpny × nx, Su1 =

CBu
CBu + CABu

⋯

∑
h = 0

p− 1
CAhBu

∈ ℜpny × nu

Su =

CBu 0 ⋯ 0
CBu + CABu CBu ⋯ 0

⋯ ⋯ ⋯ ⋯

∑
h = 0

p− 1
CAhBu ∑

h = 0

p− 2
CAhBu ⋯ CBu

∈ ℜpny × pnu

Hv =

CBv Dv 0 ⋯ 0
CABv CBv Dv ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯

CAp− 1Bv CAp− 2Bv CAp− 3Bv ⋯ Dv

∈ ℜpny × (p + 1)nv .

Optimization Variables

Let m be the number of free control moves, and let z= [z0; ...; zm–1]. Then,

Δu(0)
⋯

Δu(p− 1)
= JM

z0

⋯
zm− 1

where JM depends on the choice of blocking moves. Together with the slack variable ɛ, vectors z0, ...,
zm–1 constitute the free optimization variables of the optimization problem. In the case of systems with
a single manipulated variable, z0, ..., zm–1 are scalars.

Consider the blocking moves depicted in the following graph.

2 Model Predictive Control Basics

2-12

Blocking Moves: Inputs and Input Increments for moves = [2 3 2]

This graph corresponds to the choice moves=[2 3 2], or equivalently, u(0)=u(1), u(2)=u(3)=u(4),
u(5)=u(6), Δ u(0)=z0, Δ u(2)=z1, Δ u(5)=z2, Δ u(1)=Δ u(3)=Δ u(4)=Δ u(6)=0.

Then, the corresponding matrix JM is

JM =

I 0 0
0 0 0
0 I 0
0 0 0
0 0 0
0 0 I
0 0 0

For more information on manipulated variable blocking, see “Manipulated Variable Blocking” on page
3-44.

Cost Function
Standard Form

The function to be optimized is

 Optimization Problem

2-13

J(z, ε) =
u(0)
⋯

u(p− 1)
−

utarget(0)
⋯

utarget(p− 1)

T

Wu
2

u(0)
⋯

u(p− 1)
−

utarget(0)
⋯

utarget(p− 1)
+

Δu(0)
⋯

Δu(p− 1)

T

WΔu
2

Δu(0)
⋯

Δu(p− 1)

 +
y(1)
⋯

y(p)
−

r(1)
⋯

r(p)

T

Wy
2

y(1)
⋯

y(p)
−

r(1)
⋯

r(p)
+ ρεε2

where

Wu = diag w0, 1
u , w0, 2

u , ..., w0, nu
u , ..., wp− 1, 1

u , wp− 1, 2
u , ..., wp− 1, nu

u

WΔu = diag w0, 1
Δu , w0, 2

Δu , ..., w0, nu
Δu , ..., wp− 1, 1

Δu , wp− 1, 2
Δu , ..., wp− 1, nu

Δu

Wy = diag w1, 1
y , w1, 2

y , ..., w1, ny
y , ..., wp, 1

y , wp, 2
y , ..., wp, ny

y

 (2-1)

Finally, after substituting u(k), Δu(k), y(k), J(z) can be rewritten as

J(z, ε) = ρεε2 + zTKΔuz + 2
r(1)
⋯

r(p)

T

Kr +
v(0)
⋯

v(p)

T

Kv + u(− 1)TKu +
utarget(0)

⋯
utarget(p− 1)

T

Kut + x(0)TKx z

 +cy
TWycy + cu

TWucu

 (2-2)

where

cy = Sxx(0) + Su1u(− 1) + Hv

v(0)
⋯

v(p)
−

r(1)
⋯

r(p)

cu =
I1
⋯
Ip

u(− 1)−
utarget(0)

⋯
utarget(p− 1)

Here, I1 = … = Ip are identity matrices of size nu.

Note You may want the QP problem to remain strictly convex. If the condition number of the Hessian
matrix KΔU is larger than 1012, add the quantity 10*sqrt(eps) on each diagonal term. You can use
this solution only when all input rates are unpenalized (WΔu=0) (see the Weights property of the mpc
object).

Alternative Cost Function

If you are using the alternative cost function shown in “Alternative Cost Function” on page 2-9, then
“Equation 2-1” is replaced by the following:

Wu = blkdiag Ru, ..., Ru
WΔu = blkdiag RΔu, ..., RΔu
Wy = blkdiag Q, ..., Q

 (2-3)

In this case, the block-diagonal matrices repeat p times, for example, once for each step in the
prediction horizon.

2 Model Predictive Control Basics

2-14

You also have the option to use a combination of the standard and alternative forms. For more
information, see the Weights property of the mpc object.

Constraints

Next, consider the limits on inputs, input increments, and outputs along with the constraint ɛ≥ 0.

ymin(1)− εVmin
y (1)

⋯
ymin(p)− εVmin

y (p)

umin(0)− εVmin
u (0)

⋯
umin(p− 1)− εVmin

u (p− 1)

Δumin(0)− εVmin
Δu (0)

⋯
Δumin(p− 1)− εVmin

Δu (p− 1)

≤

y(1)
⋯

y(p)
u(0)
⋯

u(p− 1)
Δu(0)
⋯

Δu(p− 1)

≤

ymax(1) + εVmax
y (1)

⋯
ymax(p) + εVmax

y (p)

umax(0) + εVmax
u (0)

⋯
umax(p− 1) + εVmax

u (p− 1)

Δumax(0) + εVmax
Δu (0)

⋯
Δumax(p− 1) + εVmax

Δu (p− 1)

Note To reduce computational effort, the controller automatically eliminates extraneous constraints,
such as infinite bounds. Thus, the constraint set used in real time may be much smaller than that
suggested in this section.

Similar to what you did for the cost function, you can substitute u(k), Δu(k), y(k), and obtain

Mzz + Mεε ≤ Mlim + Mv

v(0)
⋯

v(p)
+ Muu(− 1) + Mxx(0) (2-4)

In this case, matrices Mz, Mɛ, Mlim, Mv, Mu, and Mx are obtained from the upper and lower bounds and
ECR values.

Unconstrained Model Predictive Control
The optimal solution is computed analytically

z * = − KΔu
−1

r(1)
⋯

r(p)

T

Kr +
v(0)
⋯

v(p)
Kv + u(− 1)TKu +

utarget(0)
⋯

utarget(p− 1)

T

Kut + x(0)TKx

T

and the model predictive controller sets Δu(k)=z*0, u(k)=u(k–1)+Δu(k).

 Optimization Problem

2-15

See Also

More About
• “Adjust Disturbance and Noise Models” on page 3-25
• “Setting Time-Varying Weights and Constraints with MPC Designer” on page 5-42
• “Terminal Weights and Constraints” on page 3-18

2 Model Predictive Control Basics

2-16

QP Solvers
The model predictive controller QP solver converts a linear MPC optimization problem to the general
form QP problem

Min
x

(1
2x⊺Hx + f⊺x)

subject to the linear inequality constraints

Ax ≤ b

where

• x is the solution vector.
• H is the Hessian matrix. This matrix is constant when your prediction model and tuning weights

do not change at run time.
• A is a matrix of linear constraint coefficients. This matrix is constant when your prediction model

does not change at run time.
• b and f are vectors.

At the beginning of each control interval, the controller computes H, f, A, and b. If H or A is constant,
the controller retrieves their precomputed values.

Built-In QP Solvers
Model Predictive Control Toolbox software supports two built-in algorithms for solving the QP
problem. Both solvers require the Hessian matrix to be positive definite.

• Active-set solver — This solver can provide fast and robust performance for small-scale and
medium-scale optimization problems in both single and double precision. The active-set solver
uses the KWIK algorithm from [1]. To use the active-set solver, set the Optimizer.Algorithm
property of your MPC controller to 'active-set'. To configure the algorithm settings, use the
Optimizer.ActiveSetOptions property of your controller.

• Interior-point solver — This solver can provide superior performance for large-scale optimization
problems, such as MPC applications that enforce constraints over large prediction and control
horizons. This interior-point solver uses a primal-dual algorithm with a Mehrotra predictor-
corrector. To use the interior-point solver, set the Optimizer.Algorithm property of your MPC
controller to 'interior-point'. To configure the algorithm settings, use the
Optimizer.InteriorPointOptions property of your controller.

Solver Configuration

When selecting and configuring the QP solver for your application, consider the following:

• The size and configuration of the MPC problem affects the performance of the built-in QP solvers.
To determine which solver is best for your application, consider simulating your controller across
multiple simulation scenarios using both QP solvers.

• The interior-point solver is more sensitive to solver parameters than the active-set solver.
Therefore, it can require more adjustment to find an optimal balance between performance and
robustness.

 QP Solvers

2-17

• The active-set solver also uses a nonadjustable tolerance when testing for an optimal solution. You
can adjust the optimality tolerances for the interior-point solver.

• One or more linear constraints can be violated slightly due to numerical round-off errors. Such
violations are normal and do not generate warning messages. To adjust the tolerance for
acceptable constraint violations, use the ConstraintTolerance setting for either the active-set
or interior-point solver.

• The search for a QP solution is an iterative process. For either solver, you can specify the
maximum number of iterations using the corresponding MaxIterations setting. If the number of
iterations reaches the maximum, the algorithm terminates.

• The default maximum number of iterations for the active-set solver is 4 nc + nv , where nc and nv
are the number of constraints and optimization variables across the prediction horizon,
respectively. For some controller configurations, this value can be very large, which can make the
QP solver appear to stop responding. This value has a lower bound of 120.

• The default maximum number of iterations for the interior-point solver is 50.
• If your MPC problem includes hard constraints after conversion to a QP problem, the QP

inequality constraints can be infeasible (impossible to satisfy). If the QP solver detects infeasibility,
it terminates immediately.

When the solver detects an infeasible problem or reaches the maximum number of iterations without
finding an optimal solution, the controller retains the last successful control output. For more
information, see mpcmove. You can detect an abnormal outcome and override the default behavior as
you see fit.

In the first control step, the QP solvers use a cold start, in which the initial guess is the unconstrained
solution described in “Unconstrained Model Predictive Control” on page 2-15. If x satisfies the
constraints, it is the optimal QP solution and the algorithm terminates. Otherwise, at least one of the
linear inequality constraints must be satisfied as an equality, and the solver computes the optimal
solution. For subsequent control steps:

• The active-set solver uses a warm start where the active constraint set determined in the previous
control step becomes the initial guess.

• The interior-point solver continues to use a cold start.

Suboptimal QP Solution

For a given MPC application with constraints, there is no way to predict how many QP solver
iterations are required to find an optimal solution. Also, in real-time applications, the number of
iterations can change dramatically from one control interval to the next. In such cases, the worst-case
execution time can exceed the limit that is allowed on the hardware platform and determined by
controller sample time.

You set a guaranteed worst-case execution time for your MPC controller by applying a suboptimal
solution after the number of optimization iterations exceeds a specified maximum value. To set the
worst-case execution time, first determine the time needed for a single optimization iteration by
experimenting with your controller under nominal conditions. Then, set an upper bound on the
number of iterations per control interval. For example, if it takes around 1 ms to compute each
iteration on the hardware and the controller sample time is 10 ms, set the maximum number of
iterations to no greater than 10.

MPCobj.Optimizer.ActiveSetOptions.MaxIterations = 10;

2 Model Predictive Control Basics

2-18

By default, an MPC controller object has a lower bound of 120 on the maximum number of iterations
for the active-set solver.

By default, when the solver reaches the maximum number of solver iterations without an optimal
solution, the controller holds the manipulated variables at their previous values. To use the
suboptimal solution reached after the final iteration, set the UseSuboptimalSolution option to
true.

MPCobj.Optimizer.UseSuboptimalSolution = true;

While the solution is not optimal, the MPC controller adjusts the solution such that it satisfies all your
specified constraints.

There is no guarantee that the suboptimal solution performs better than if you hold the controller
output constant. You can simulate your system using both approaches, and select the configuration
that provides better controller performance.

For an example, see “Use Suboptimal Solution in Fast MPC Applications” on page 5-86.

Custom QP Applications

To access the QP solvers for applications that require solving online QP problems, use the
mpcActiveSetSolver and mpcInteriorPointSolver functions, which are useful for:

• Advanced MPC applications that are beyond the scope of Model Predictive Control Toolbox
software.

• Custom QP applications, including applications that require code generation.

Custom QP Solver
Model Predictive Control Toolbox software lets you specify a custom QP solver for your MPC
controller. This solver is called in place of the built-in solvers at each control interval. This option is
useful for:

• Validating your simulation results or generating code with an in-house third-party solver that you
trust.

• Applications where the built-in solvers do not provide satisfactory performance for your specific
problem.

You can define a custom solver for simulation or for code generation. In either instance, you define
the custom solver using a custom function and configure your controller to use this custom function.

 QP Solvers

2-19

Task Custom Solver
Function

Affected MATLAB
Functions

Affected Simulink
Blocks

Simulation

Set
Optimizer.CustomSo
lver to true.

Optimizer.CustomSo
lverCodeGen is
ignored.

mpcCustomSolver.m

Supports:

• MATLAB code
• MEX files

• sim
• mpcmove
• mpcmoveAdaptive
• mpcmoveMultiple
• mpcmoveCodeGener

ation

• MPC Controller
• Adaptive MPC

Controller
• Multiple MPC

Controllers

Code Generation

Set
Optimizer.CustomSo
lverCodeGen to true.

Optimizer.CustomSo
lver is ignored.

mpcCustomSolverCod
eGen.m

Supports:

• MATLAB code
suitable for code
generation

• C/C++ code

• mpcMoveCodeGener
ation

Custom Solver for Simulation

To simulate an MPC controller with a custom QP solver, perform the following steps.

1 Copy the solver template file to your working folder or anywhere on the MATLAB path, and
rename it mpcCustomSolver.m. To copy the solver template to your current working folder, type
the following at the MATLAB command line.

src = which('mpcCustomSolver.txt');
dest = fullfile(pwd,'mpcCustomSolver.m');
copyfile(src,dest,'f');

2 Modify mpcCustomSolver.m by adding your own custom solver. Your solver must be able to run
in MATLAB and be implemented in a MATLAB script or MEX file.

3 Configure your MPC controller MPCobj to use the custom solver.

MPCobj.Optimizer.CustomSolver = true;

The software now uses your custom solver for simulation in place of the built-in QP KWIK solver.
4 Simulate your controller. For more information, see “Simulation”.

For an example, see “Simulate MPC Controller with a Custom QP Solver” on page 5-77.

Custom Solver for Code Generation

You can generate code for MPC controllers that use a custom QP solver written in either C/C++ code
or MATLAB code suitable for code generation.

• To do so at the command line, you must have MATLAB Coder™ software.
• To do so in Simulink you must have Simulink Coder or Simulink PLC Coder™ software.

To generate code for MPC controllers that use a custom QP solver, perform the following steps.

2 Model Predictive Control Basics

2-20

1 Copy the solver template file to your working folder or anywhere on the MATLAB path, and
rename it mpcCustomSolverCodeGen.m. To copy the MATLAB code template to your current
working folder, type the following at the MATLAB command line.

src = which('mpcCustomSolverCodeGen_TemplateEML.txt');
dest = fullfile(pwd,'mpcCustomSolverCodeGen.m');
copyfile(src,dest,'f');

Alternatively, you can use the C template.

src = which('mpcCustomSolverCodeGen_TemplateC.txt');
dest = fullfile(pwd,'mpcCustomSolverCodeGen.m');
copyfile(src,dest,'f');

2 Modify mpcCustomSolverCodeGen.m by adding your own custom solver.
3 Configure your MPC controller MPCobj to use the custom solver.

MPCobj.Optimizer.CustomSolverCodeGen = true;

The software now uses your custom solver for code generation in place of the built-in QP KWIK
solver.

4 Generate code for the controller. For more information, see “Generate Code and Deploy
Controller to Real-Time Targets” on page 10-2.

For an example, see “Simulate and Generate Code for MPC Controller with Custom QP Solver” on
page 10-56.

Custom Solver for both Simulation and Code Generation

You can implement the same custom QP solver for both simulation and code generation. To do so:

• Set both Optimizer.CustomSolver and Optimizer.CustomSolverCodeGen to true.
• Create both mpcCustomSolver.m and mpcCustomSolverCodeGen.m.

During simulation, your controller uses the mpcCustomSolver.m custom function. For code
generation, your controller uses the mpcCustomSolverCodeGen.m custom function.

You can specify the same MATLAB code in both custom solver functions, provided the code is suitable
for code generation.

If you implement mpcCustomSolverCodeGen.m using C/C++ code, create a MEX file using the
code. You can then call this MEX file from mpcCustomSolver.m. For more information on creating
and using MEX files, see “C MEX File Applications”.

Custom Solver Function Implementation

When you implement a custom QP solver, your custom function must have one of the following
signatures:

• Custom solver for simulation:

function [x,status] = mpcCustomSolver(H,f,A,b,x0)

• Custom solver for code generation:

function [x,status] = mpcCustomSolverCodeGen(H,f,A,b,x0)

 QP Solvers

2-21

For both simulation and code generation, your custom solver has the following input and output
arguments.

• H is a Hessian matrix, specified as an n-by-n symmetric positive definite matrix, where n is the
number of optimization variables.

• f is the multiplier of the objective function linear term, specified as a column vector of length n.
• A is a matrix of linear inequality constraint coefficients, specified as an m-by-n matrix, where m is

the number of constraints.
• b is the right side of the inequality constraint equation, specified as a column vector of length m.
• x0 is an initial guess for the solution, specified as a column vector of length n.
• x is the optimal solution, returned as a column vector of length n.
• status is a solution validity indicator, returned as an integer as shown in the following table.

Value Description
> 0 x is optimal. status represents the number of iterations performed during

optimization.
0 The maximum number of iterations was reached without finding an optimal solution.

The solution x might be suboptimal or infeasible.

If the Optimizer.UseSuboptimalSolution property of your controller is true,
the controller uses the suboptimal solution in x when status is 0.

-1 The problem appears to be infeasible, that is, the constraints cannot be satisfied.
-2 An unrecoverable numerical error occurred.

Note The MPC controller expects the custom solver functions to solve the QP problem subject to the
linear inequality constraints Ax ≥ b. If your custom solver uses Ax ≤ b, you must change the sign of
both A and b before passing them to your custom solver code.

Use quadprog as Custom QP Solver
You can configure an MPC object to use the active-set solver available with the quadprog function as
a custom QP solver.

To automatically configure the MPC object mpcobj to use quadprog as custom QP solver for both
simulation and code generation, you can use the setCustomSolver function. Specifically at the
MATLAB command prompt, enter the following.

setCustomSolver(mpcobj,'quadprog')

This command generates, in the current folder, the files mpcCustomSolver.m and
mpcCustomSolverCodeGen.m, which internally call quadprog. It then sets
mpcobj.Optimizer.CustomSolver and mpcobj.Optimizer.CustomSolverCodeGen to true.

You can also further customize these functions, for example by adjusting the solver options, provided
that you use the active-set solver (since other quadprog solvers are not supported for MPC
problems).

To revert mpcobj back to use the built-in algorithm specified in mpcobj.Optimizer.Algorithm for
both simulation and code generation, call setCustomSolver as follows.

2 Model Predictive Control Basics

2-22

setCustomSolver(mpcobj,'quadprog')

This command sets mpcobj.Optimizer.CustomSolver and
mpcobj.Optimizer.CustomSolverCodeGen to false.

Integration with FORCESPRO Solver
You can use FORCESPRO, a real-time embedded optimization software tool developed by Embotech
AG, to simulate and generate code for an MPC controller designed using Model Predictive Control
Toolbox software. Starting with FORCESPRO 2.0, Embotech provides a plugin that leverages the
design capabilities of Model Predictive Control Toolbox software and the computational performance
of FORCESPRO. Using the plugin, you can generate a custom QP solver that allows deployment on
real-time hardware and is highly optimized based on your specific MPC problem to achieve
satisfactory real-time performance. Especially long-horizon MPC problems can be solved very
efficiently.

For information on using the FORCESPRO solver together with Model Predictive Control Toolbox
software, see “Implement MPC Controllers using Embotech FORCESPRO Solvers” on page 10-67.

References
[1] Schmid, C., and L.T. Biegler. "Quadratic Programming Methods for Reduced Hessian SQP."

Computers & Chemical Engineering 18, no. 9 (September 1994): 817–32. https://doi.org/
10.1016/0098-1354(94)E0001-4.

See Also
mpc | mpcmove | mpcActiveSetSolver | mpcInteriorPointSolver

More About
• “Optimization Problem” on page 2-7
• “Simulate MPC Controller with a Custom QP Solver” on page 5-77

 QP Solvers

2-23

Controller Refinement

• “Setting Targets for Manipulated Variables” on page 3-2
• “Constraints on Linear Combinations of Inputs and Outputs” on page 3-5
• “Use Custom Constraints in Blending Process” on page 3-9
• “Terminal Weights and Constraints” on page 3-18
• “Provide LQR Performance Using Terminal Penalty Weights” on page 3-20
• “Adjust Disturbance and Noise Models” on page 3-25
• “Custom State Estimation” on page 3-32
• “Implement Custom State Estimator Equivalent to Built-In Kalman Filter” on page 3-37
• “Manipulated Variable Blocking” on page 3-44
• “Specifying Alternative Cost Function with Off-Diagonal Weight Matrices” on page 3-48

3

Setting Targets for Manipulated Variables
This example shows how to design a model predictive controller for a plant with two inputs and one
output with target setpoint for one of the two manipulated variables.

Define Plant Model

The linear plant model has two inputs and one output. Define the plant as a transfer function, convert
it to state space, specify the initial state, and extract the plant matrices for later use within the
Simulink model.

plant = ss(tf({[3 1],[2 1]},{[1 2*.3 1],[1 2*.5 1]}));
x0 = [0 0 0 0]';
A = plant.A;
B = plant.B;
C = plant.C;
D = plant.D;

Design MPC Controller

Create an MPC controller with sampling time 0.4 s, and prediction and control horizons of 20 and 5
steps, respectively.

mpcobj = mpc(plant,0.4,20,5);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Specify weights for both manipulated variables and output.

mpcobj.weights.manipulated = [0.3 0]; % weight difference MV#1 - Target#1
mpcobj.weights.manipulatedrate = [0 0];
mpcobj.weights.output = 1;

Define constraints for the manipulated variable rate.

mpcobj.MV = struct('RateMin',{-0.5;-0.5},'RateMax',{0.5;0.5});

Set a target for one manipulated variable

Specify target setpoint u = 2 for the first manipulated variable.

mpcobj.MV(1).Target=2;

Simulate with Simulink

Define the model name and open the Simulink model. Note that the output reference is a square
wave. Then simulate the model, using the sim command.

mdl = 'mpc_utarget';
open_system(mdl)
sim(mdl);

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

3 Controller Refinement

3-2

 Setting Targets for Manipulated Variables

3-3

The first plot shows that the first manipulated variable reaches its set point after about 6 seconds,
while the plant output reaches its reference.

bdclose(mdl) % close the Simulink model

See Also
mpc | MPC Controller

More About
• “MPC Signal Types”

3 Controller Refinement

3-4

Constraints on Linear Combinations of Inputs and Outputs
You can constrain linear combinations of plant input and output variables. For example, you can
constrain a particular manipulated variable (MV) to be greater than a linear combination of two other
MVs.

The general form of such constraints is:

Here:

• is the QP slack variable used for constraint softening. For more information, see “Constraint
Softening” on page 1-7.

• are the manipulated variable values, in engineering units.
• are the predicted plant outputs, in engineering units.
• are the measured plant disturbance inputs, in engineering units.
• , , , , and are constant matrices and vectors. For more information, see setconstraint.

As with the QP cost function, output prediction using the state observer makes these constraints a
function of the QP decision variables.

To set the mixed input/output constraints of an MPC controller, use the setconstraint function. To
obtain the existing constraints from a controller, use getconstraint.

When using mixed input/output constraints, consider the following:

• Mixed input/output constraints are dimensional by default.
• Run-time updating of mixed input/output constraints is supported at the command line and in

Simulink®. For more information, see “Update Constraints at Run Time” on page 5-27.
• Using mixed input/output constraints is not supported in MPC Designer.

As an example, consider an MPC controller for a double-integrator plant with mixed input/output
constraints.

Create Initial MPC Controller

The basic setup of the MPC controller includes:

• A double integrator as the prediction model
• Prediction horizon of 20
• Control horizon of 20
• Input constraints:

plant = tf(1,[1 0 0]);
Ts = 0.1;
p = 20;
m = 20;
mpcobj = mpc(plant,Ts,p,m);
mpcobj.MV = struct('Min',-1,'Max',1);

 Constraints on Linear Combinations of Inputs and Outputs

3-5

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Define Mixed Input/Output Constraints

Constrain the sum of the input u(t) and output y(t) must be nonnegative and smaller than 1.2:

To impose this combined (mixed) I/O constraint, formulate it as a set of inequality constraints
involving and .

To define these constraints using the setconstraint function, set the constraint constants as
follows:

setconstraint(mpcobj,[1;-1],[1;-1],[1.2;0]);

Simulate Controller

Simulate closed-loop control of the linear plant model in Simulink. The controller mpcobj is specified
in the MPC Controller block.

mdl = 'mpc_mixedconstraints';
open_system(mdl)
sim(mdl)

-->Converting the "Model.Plant" property of "mpc" object to state-space.
-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

3 Controller Refinement

3-6

 Constraints on Linear Combinations of Inputs and Outputs

3-7

The MPC controller keeps the sum between 0 and 1.2 while tracking the reference signal,
.

bdclose(mdl)

See Also
setconstraint | getconstraint

More About
• “Optimization Problem” on page 2-7
• “Update Constraints at Run Time” on page 5-27
• “Use Custom Constraints in Blending Process” on page 3-9

3 Controller Refinement

3-8

Use Custom Constraints in Blending Process
This example shows how to design an MPC controller for a blending process using custom mixed
input/output constraints.

Blending Process

A continuous blending process combines three feeds in a well-mixed container to produce a blend
having desired properties. The dimensionless governing equations are:

where

• is the mixture inventory (in the container).
• is the plow rate for feed .
• is the rate at which the blend is being removed from inventory, that is the demand.
• is the concentration of constituent in feed .
• is the concentration of constituent in the blend.
• is time.

In this example, there are two important constituents, = 1 and 2.

The control objectives are targets for the two constituent concentrations in the blend and the mixture
inventory. The challenge is that the demand, , and feed compositions, , vary. The inventory, blend
compositions, and demand are measured, but the feed compositions are unmeasured.

At the nominal operating condition:

• Feed 1, , (mostly constituent 1) is 80% of the total inflow.
• Feed 2, , (mostly constituent 2) is 20%.
• Feed 3, , (pure constituent 1) is not used.

The process design allows manipulation of the total feed entering the mixing chamber, , and the
individual rates of feeds 2 and 3. In other words, the rate of feed 1 is:

Each feed has limited availability:

The equations are normalized such that, at the nominal steady state, the mean residence time in the
mixing container is .

 Use Custom Constraints in Blending Process

3-9

The constraint is imposed by an upstream process, and the constraints
 are imposed by physical limits.

Define Linear Plant Model

The blending process is mildly nonlinear, however you can derive a linear model at the nominal
steady state. This approach is quite accurate unless the unmeasured feed compositions change. If the
change is sufficiently large, the steady-state gains of the nonlinear process change sign, and the
closed-loop system can become unstable.

Specify the number of feeds, ni, and the number of constituents, nc.

ni = 3;
nc = 2;

Specify the nominal flow rates for the three input streams and the output stream, or demand. At the
nominal operating condition, the output flow rate is equal to the sum of the input flow rates.

Fin_nom = [1.6,0.4,0];
F_nom = sum(Fin_nom);

Define the nominal constituent compositions for the input feeds, where cin_nom(i,j) represents
the composition of constituent i in feed j.

cin_nom = [0.7 0.2 0.8;0.3 0.8 0];

Define the nominal constituent compositions in the output feed.

cout_nom = cin_nom*Fin_nom'/F_nom;

Normalize the linear model such that the target demand is 1 and the product composition is 1.

fin_nom = Fin_nom/F_nom;
gij = [cin_nom(1,:)/cout_nom(1); cin_nom(2,:)/cout_nom(2)];

Create a state-space model with feed flows F1, F2, and F3 as MVs:

A = [zeros(1,nc+1); zeros(nc,1) -eye(nc)];
Bu = [ones(1,ni); gij-1];

Change the MV definition to [FT, F2, F3] where F1 = FT - F2 - F3

Bu = [Bu(:,1), Bu(:,2)-Bu(:,1), Bu(:,3)-Bu(:,1)];

Add the measured disturbance, blend demand, as the 4th model input.

Bv = [-1; zeros(nc,1)];
B = [Bu Bv];

Define all of the states as measurable. The states consist of the mixture inventory and the constituent
concentrations.

C = eye(nc+1);

Specify that there is no direct feed-through from the inputs to the outputs.

D = zeros(nc+1,ni+1);

3 Controller Refinement

3-10

Construct the linear plant model.

Model = ss(A,B,C,D);
Model.InputName = {'F_T','F_2','F_3','F'};
Model.InputGroup.MV = 1:3;
Model.InputGroup.MD = 4;
Model.OutputName = {'V','c_1','c_2'};

Create MPC Controller

Specify the sample time, prediction horizon, and control horizon for the controller.

Ts = 0.1;
p = 10;
m = 3;

Create the controller.

mpcobj = mpc(Model,Ts,p,m);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

The outputs are the inventory, y(1), and the constituent concentrations, y(2) and y(3). Specify
nominal values of unity after normalization for all outputs.

mpcobj.Model.Nominal.Y = [1 1 1];

Specify the normalized nominal values for the manipulated variables, u(1), u(2) and u(3), and the
measured disturbance, u(4).

mpcobj.Model.Nominal.U = [1 fin_nom(2) fin_nom(3) 1];

Specify output tuning weights. To pay more attention to controlling the inventory and the composition
of the first constituent, use larger weights for the first two outputs.

mpcobj.Weights.OV = [1 1 0.5];

Specify the hard bounds (physical limits) on the manipulated variables.

umin = [0 0 0];
umax = [2 0.6 0.6];
for i = 1:3
 mpcobj.MV(i).Min = umin(i);
 mpcobj.MV(i).Max = umax(i);
 mpcobj.MV(i).RateMin = -0.1;
 mpcobj.MV(i).RateMax = 0.1;
end

The total feed rate and the rates of feed 2 and feed 3 have upper bounds. Feed 1 also has an upper
bound, determined by the upstream unit supplying it.

Specify Mixed Constraints

Given the specified upper bounds on the feed 2 and 3 rates (0.6), it is possible that their sum could be
as much as 1.2. Since the nominal total feed rate is 1.0, the controller can request a physically
impossible condition, where the sum of feeds 2 and 3 exceeds the total feed rate, which implies a
negative feed 1 rate.

 Use Custom Constraints in Blending Process

3-11

The following constraint prevents the controller from requesting an unrealistic value.

Specify this constraint in the form .

E = [-1 1 1; 1 -1 -1];
g = [0;0.8];

Since no outputs are specified in the mixed constraints, set their coefficients to zero.

F = zeros(2,3);

Specify that both constraints are hard (ECR = 0).

v = zeros(2,1);

Specify zero coefficients for the measured disturbance.

h = zeros(2,1);

Set the custom constraints in the MPC controller.

setconstraint(mpcobj,E,F,g,v,h)

Simulate Model in Simulink

The Simulink model contains a nonlinear model of the blending process and an unmeasured
disturbance in the constituent 1 feed composition.

The Demand, , is modeled as a measured disturbance. The operator can vary the demand value, and
the resulting signal goes to both the process and the controller.

The model simulates the following scenario:

• At , the process is operating at steady state.
• At , the Total Demand decreases from to .
• At , there is a large step increase in the concentration of constituent 1 in feed 1, from 1.17 to

2.17.

Open and simulate the Simulink model.

mdl = 'mpc_blendingprocess';
open_system(mdl)
sim(mdl)

-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->Assuming output disturbance added to measured output channel #3 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

3 Controller Refinement

3-12

 Use Custom Constraints in Blending Process

3-13

3 Controller Refinement

3-14

In the simulation:

• At time 0, the plant operates steadily at the nominal conditions.
• At time 1, the demand decreases by 10%, and the controller maintains the inventory close to its

setpoint.

 Use Custom Constraints in Blending Process

3-15

• At time 2, there is a large unmeasured increase in the concentration of constituent 1 contained in
feed 1. This disturbance causes a prediction error and a large disturbance in the blend
composition.

The disturbance is a nonlinear effect, but the linear MPC controller recovers well and drives the
blend composition back to its setpoint

Verify Effect of Custom Constraints

Plot the feed rate signals.

figure
plot(MVs.time,[MVs.signals(1).values(:,2), ...
 (MVs.signals(2).values + MVs.signals(3).values), ...
 (MVs.signals(1).values(:,2)-MVs.signals(2).values-MVs.signals(3).values)])
grid
legend('FT','F2+F3','F1')

The unmeasured disturbance occurs at time 2, which requires the controller to decrease F1. During
the transient, F1 becomes zero. If the mixed input/output constraint had not been included, F1 would
have been negative. The controller requests for FT, F2, and F3 would have been impossible to satisfy,
which would lead to a performance degradation. With the constraint included, the controller does its
best given the physical limits of the system.

3 Controller Refinement

3-16

bdclose(mdl)

See Also
setconstraint

More About
• “Constraints on Linear Combinations of Inputs and Outputs” on page 3-5

 Use Custom Constraints in Blending Process

3-17

Terminal Weights and Constraints
Terminal weights are the quadratic weights Wy on y(t+p) and Wu on u(t + p – 1). The variable p is the
prediction horizon. You apply the quadratic weights at time k +p only, such as the prediction
horizon’s final step. Using terminal weights, you can achieve infinite horizon control that guarantees
closed-loop stability. However, before using terminal weights, you must distinguish between problems
with and without constraints.

Terminal constraints are the constraints on y(t + p) and u(t + p – 1), where p is the prediction
horizon. You can use terminal constraints as an alternative way to achieve closed-loop stability by
defining a terminal region.

Note You can use terminal weights and constraints only at the command line. See setterminal.

For the relatively simple unconstrained case, a terminal weight can make the finite-horizon model
predictive controller behave as if its prediction horizon were infinite. For example, the MPC
controller behavior is identical to a linear-quadratic regulator (LQR). The standard LQR derives from
the cost function:

J(u) = ∑
i = 1

∞
x(k + i)TQx(k + i) + u(k + i− 1)TRu(k + i− 1) (3-1)

where x is the vector of plant states in the standard state-space form:

x k + 1 = Ax + Bu k (3-2)

The LQR provides nominal stability provided matrices Q and R meet certain conditions. You can
convert the LQR to a finite-horizon form as follows:

J(u) = ∑
i = 1

p− 1
[x(k + i)TQx(k + i) + u(k + i− 1)TRu(k + i− 1)] + x(k + p)TQpx(k + p) (3-3)

where Qp , the terminal penalty matrix, is the solution of the Riccati equation:

Qp = ATQpA− ATQpB(BTQpB + R)−1BTQpA + Q (3-4)

You can obtain this solution using the lqr command in Control System Toolbox™ software.

In general, Qp is a full (symmetric) matrix. You cannot use the “Standard Cost Function” on page 2-7
to implement the LQR cost function. The only exception is for the first p – 1 steps if Q and R are
diagonal matrices. Also, you cannot use the alternative cost function on page 2-9 because it employs
identical weights at each step in the horizon. Thus, by definition, the terminal weight differs from
those in steps 1 to p – 1. Instead, use the following steps:

1 Augment the model (“Equation 3-2”) to include the weighted terminal states as auxiliary outputs:

yaug(k) = Qcx(k)

where Qc is the Cholesky factorization of Qp such that Qp = Qc
TQc.

2 Define the auxiliary outputs yaug as unmeasured, and specify zero weight to them.

3 Controller Refinement

3-18

3 Specify unity weight on yaug at the last step in the prediction horizon using setterminal.

To make the model predictive controller entirely equivalent to the LQR, use a control horizon equal to
the prediction horizon. In an unconstrained application, you can use a short horizon and still achieve
nominal stability. Thus, the horizon is no longer a parameter to be tuned.

When the application includes constraints, the horizon selection becomes important. The constraints,
which are usually softened, represent factors not considered in the LQR cost function. If a constraint
becomes active, the control action deviates from the LQR (state feedback) behavior. If this behavior is
not handled correctly in the controller design, the controller may destabilize the plant.

For an in-depth discussion of design issues for constrained systems see [1]. Depending on the
situation, you might need to include terminal constraints to force the plant states into a defined
region at the end of the horizon, after which the LQR can drive the plant signals to their targets. Use
setterminal to add such constraints to the controller definition.

The standard (finite-horizon) model predictive controller provides comparable performance, if the
prediction horizon is long. You must tune the other controller parameters (weights, constraint
softening, and control horizon) to achieve this performance.

Tip Robustness to inaccurate model predictions is usually a more important factor than nominal
performance in applications.

References
[1] Rawlings, J. B., and David Q. Mayne, Model Predictive Control: Theory and Design, Nob Hill

Publishing, 2010.

See Also
setterminal

More About
• “Provide LQR Performance Using Terminal Penalty Weights” on page 3-20

 Terminal Weights and Constraints

3-19

Provide LQR Performance Using Terminal Penalty Weights
It is possible to make a finite-horizon model predictive controller equivalent to an infinite-horizon
linear quadratic regulator (LQR) by setting tuning weights on the terminal predicted states.

The standard MPC cost function is similar to the cost function for an LQR controller with output
weighting, as shown in the following equation:

J(u) = ∑
i = 1

∞
y(k + i)TQy(k + i) + u(k + i− 1)TRu(k + i− 1)

The LQR and MPC cost functions differ in the following ways:

• The LQR cost function forces y and u toward zero, whereas the MPC cost function forces y and u
toward nonzero setpoints. You can shift the MPC prediction model origin to eliminate this
difference and achieve zero nominal setpoints.

• The LQR cost function uses an infinite prediction horizon in which the manipulated variable
changes at each sample time. In the standard MPC cost function, the horizon length is p, and the
manipulated variable changes m times, where m is the control horizon.

The two cost functions are equivalent if the MPC cost function is:

J(u) = ∑
i = 1

p− 1
y(k + i)TQy(k + i) + u(k + i− 1)TRu(k + i− 1) + x(k + p)TQpx(k + p)

Here, Qp is a terminal penalty weight applied at the final prediction horizon step, and the prediction
and control horizons are equal (p = m). The required Qp is the Riccati matrix calculated using the lqr
and lqry commands.

Define Plant Model

Specify the discrete-time open-loop dynamic plant model with a sample time of 0.1 seconds. For this
model, make all states measurable outputs of the plant. This plant is the double integrator plant from
[1].

A = [1 0;0.1 1];
B = [0.1;0.005];
C = eye(2);
D = zeros(2,1);
Ts = 0.1;
plant = ss(A,B,C,D,Ts);

Design Infinite-Horizon LQR Controller

Compute the Riccati matrix Qp and state feedback gain K associated with the LQR problem with
output weight Q and input weight R. For more information, see lqry.

Q = eye(2);
R = 1;
[K,Qp] = lqry(plant,Q,R);

3 Controller Refinement

3-20

Design Equivalent MPC Controller

To implement the MPC cost function, first compute L, the Cholesky decomposition of Qp, such that
LTL = Qp.

L = chol(Qp);

Next, define auxiliary unmeasured output variables yc = Lx, such that yc
Tyc = xTQpx. Augment the

output vector of the plant such that it includes these auxiliary outputs.

newPlant = plant;
set(newPlant,'C',[C;L],'D',[D;zeros(2,1)]);

Configure the state vector outputs as measured outputs and the auxiliary output signals as
unmeasured outputs. By default, the input signal is the manipulated variable.

newPlant = setmpcsignals(newPlant,'MO',[1 2],'UO',[3 4]);

Create the controller object with the same sample time as the plant and equal prediction and control
horizons.

p = 3;
m = p;
mpcobj = mpc(newPlant,Ts,p,m);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
 for output(s) y1 and zero weight for output(s) y2 y3 y4

Define tuning weights at each step of the prediction horizon for the manipulated variable and the
measured outputs.

ywt = sqrt(diag(Q))';
uwt = sqrt(diag(R))';
mpcobj.Weights.OV = [sqrt(diag(Q))' 0 0];
mpcobj.Weights.MV = sqrt(R);

To make the QP problem associated with the MPC controller positive definite, include very small
weights on manipulated variable increments.

mpcobj.Weights.MVRate = 1e-5;

Impose the terminal penalty xT k + p Qpx k + p by specifying a unit weight on yc k + p = Lx k + p .
The terminal weight on u(t+p-1) remains the same.

Y = struct('Weight',[0 0 1 1]);
U = struct('Weight',uwt);
setterminal(mpcobj,Y,U);

Since the measured output vector contains the entire state vector, remove any additional output
disturbance integrator inserted by the MPC controller.

setoutdist(mpcobj,'model',ss(zeros(4,1)));

Remove the state estimator by defining the following measurement update equation:

 Provide LQR Performance Using Terminal Penalty Weights

3-21

x[n|n] = x[n|n-1] + I * (x[n]-x[n|n-1]) = x[n]

Since the setterminal function resets the state estimator to its default value, call the
setEstimator function after calling setterminal.

setEstimator(mpcobj,[],eye(2));

Compare MPC and LQR Controller Gains

Compute the gain of the MPC controller when the constraints are inactive (unconstrained MPC), and
compare it to the LQR gain.

mpcgain = dcgain(ss(mpcobj));

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

fprintf('\n(unconstrained) MPC: u(k)=[%8.8g,%8.8g]*x(k)',mpcgain(1),mpcgain(2));

(unconstrained) MPC: u(k)=[-1.6355962,-0.91707456]*x(k)

fprintf('\n LQR: u(k)=[%8.8g,%8.8g]*x(k)\n\n',-K(1),-K(2));

 LQR: u(k)=[-1.6355962,-0.91707456]*x(k)

The state feedback gains are exactly the same.

Compare Controller Performance

Compare the performance of the LQR controller, the MPC controller with terminal weights, and a
standard MPC controller.

Compute the closed-loop response for the LQR controller.

clsys = feedback(plant,K);
Tstop = 6;
x0 = [0.2;0.2];
[yLQR,tLQR] = initial(clsys,x0,Tstop);

Compute the closed-loop response for the MPC controller with terminal weights.

simOpt = mpcsimopt(mpcobj);
simOpt.PlantInitialState = x0;
r = zeros(1,4);
[y,t,u] = sim(mpcobj,ceil(Tstop/Ts),r,simOpt);

Create a standard MPC controller with default prediction and control horizons (p=10, m=3). To match
the other controllers, remove the output disturbance model and the default state estimator from the
standard MPC controller.

mpcobjSTD = mpc(plant,Ts);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
 for output(s) y1 and zero weight for output(s) y2

mpcobjSTD.Weights.MV = uwt;
mpcobjSTD.Weights.OV = ywt;

3 Controller Refinement

3-22

setoutdist(mpcobjSTD,'model',tf(zeros(2,1)))
setEstimator(mpcobjSTD,[],C)

Compute the closed-loop response for the standard MPC controller.

simOpt = mpcsimopt(mpcobjSTD);
simOpt.PlantInitialState = x0;
r = zeros(1,2);
[ySTD,tSTD,uSTD] = sim(mpcobjSTD,ceil(Tstop/Ts),r,simOpt);

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Compare the controller responses.

plot(tSTD,ySTD,'r',t,y(:,1:2),'b',tLQR,yLQR,'mo')
xlabel('Time')
ylabel('Plant Outputs')
legend('Standard MPC','MPC with Terminal Weights','LQR','Location','NorthEast')

The MPC controller with terminal weights has a faster settling time compared to the standard MPC
controller. The LQR controller and the MPC controller with terminal weights perform identically.

You can improve the standard MPC controller performance by adjusting the horizons. For example, if
you increase the prediction and control horizons (p=20, m=5), the standard MPC controller performs
almost identically to the MPC controller with terminal weights.

This example shows that using terminal penalty weights can eliminate the need to tune the prediction
and control horizons for the unconstrained MPC case. If your application includes constraints, using a

 Provide LQR Performance Using Terminal Penalty Weights

3-23

terminal weight is insufficient to guarantee nominal stability. You must also choose appropriate
horizons and possibly add terminal constraints. For more information, see [2].

References

[1] Scokaert, P. O. M. and J. B. Rawlings, "Constrained linear quadratic regulation," IEEE
Transactions on Automatic Control (1998), Vol. 43, No. 8, pp. 1163-1169.

[2] Rawlings, J. B. and D. Q. Mayne, Model Predictive Control: Theory and Design. Nob Hill
Publishing, 2010.

See Also
setterminal

More About
• “Optimization Problem” on page 2-7
• “Terminal Weights and Constraints” on page 3-18

3 Controller Refinement

3-24

Adjust Disturbance and Noise Models
A model predictive controller requires the following to reject unknown disturbances effectively:

• Application-specific disturbance models
• Measurement feedback to update the controller state estimates

You can modify input and output disturbance models, and the measurement noise model using the
MPC Designer app and at the command line. You can then adjust controller tuning weights to
improve disturbance rejection.

Overview
MPC attempts to predict how known and unknown events affect the plant output variables (OVs).
Known events are changes in the measured plant input variables (MV and MD inputs). The plant
model of the controller predicts the impact of these events, and such predictions can be quite
accurate. For more information, see “MPC Prediction Models”.

The impacts of unknown events appear as errors in the predictions of known events. These errors
are, by definition, impossible to predict accurately. However, an ability to anticipate trends can
improve disturbance rejection. For example, suppose that the control system has been operating at a
near-steady condition with all measured OVs near their predicted values. There are no known events,
but one or more of these OVs suddenly deviates from its prediction. The controller disturbance and
measurement noise models allow you to provide guidance on how to handle such errors.

Output Disturbance Model
Suppose that your plant model includes no unmeasured disturbance inputs. The MPC controller then
models unknown events using an output disturbance model. As shown in “MPC Prediction Models”,
the output disturbance model is independent of the plant, and its output adds directly to that of the
plant model.

Using MPC Designer, you can specify the type of noise that is expected to affect each plant OV. In
the app, on the Tuning tab, in the Design section, click Estimation Models > Output Disturbance
Model. In the Output Disturbance Model dialog box, in the Update the model drop-down list, select
specifying a custom model channel by channel.

 Adjust Disturbance and Noise Models

3-25

In the Specifications section, in the Disturbance column, select one of the following disturbance
models for each output:

• White Noise — Prediction errors are due to random zero-mean white noise. This option implies
that the impact of the disturbance is short-lived, and therefore requires a modest, short-term
controller response.

• Random Step-like — Prediction errors are due to a random step-like disturbance, which lasts
indefinitely, maintaining a roughly constant magnitude. Such a disturbance requires a more
aggressive, sustained controller response.

• Random Ramp-like — Prediction errors are due to a random ramp-like disturbance, which lasts
indefinitely and tends to grow with time. Such a disturbance requires an even more aggressive
controller response.

Model Predictive Control Toolbox software represents each disturbance type as a model in which
white noise, with zero mean and unit variance, enters a SISO dynamic system consisting of one of the
following:

• A static gain — For a white noise disturbance
• An integrator in series with a static gain — For a step-like disturbance

3 Controller Refinement

3-26

• Two integrators in series with a static gain — For a ramp-like disturbance

You can also specify the white noise input Magnitude for each disturbance model, overriding the
assumption of unit variance. As you increase the noise magnitude, the controller responds more
aggressively to a given prediction error. The specified noise magnitude corresponds to the static gain
in the SISO model for each type of noise.

You can also view or modify the output disturbance model from the command line using getoutdist
and setoutdist respectively.

Measurement Noise Model
MPC also attempts to distinguish disturbances, which require a controller response, from
measurement noise, which the controller should ignore. Using MPC Designer, you can specify the
expected measurement noise magnitude and character. In the app, on the Tuning tab, in the Design
section, click Estimation Models > Measurement Noise Model. In the Model Noise Model dialog
box, in the Update the model drop-down list, select specifying a custom model channel by
channel.

In the Specifications section, in the Disturbance column, select a noise model for each measured
output channel. The noise options are the same as the output disturbance model options.

 Adjust Disturbance and Noise Models

3-27

White Noise is the default option and, in nearly all applications, should provide adequate
performance.

When you include a measurement noise model, the controller considers each prediction error to be a
combination of disturbance and noise effects. Qualitatively, as you increase the specified noise
Magnitude, the controller attributes a larger fraction of each prediction error to noise, and it
responds less aggressively. Ultimately, the controller stops responding to prediction errors and only
changes its MVs when you change the OV or MV reference signals.

Input Disturbance Model
When your plant model includes unmeasured disturbance (UD) inputs, the controller can use an input
disturbance model in addition to the standard output disturbance model. The former provides more
flexibility and is generated automatically by default. If the chosen input disturbance model does not
appear to allow complete elimination of sustained disturbances, an output disturbance model is also
added by default.

As shown in “MPC Prediction Models”, the input disturbance model consists of one or more white
noise signals, with unit variance and zero mean, entering a dynamic system. The outputs of this
system are the UD inputs to the plant model. In contrast to the output disturbance model, input

3 Controller Refinement

3-28

disturbances affect the plant outputs in a more complex way as they pass through the plant model
dynamics.

As with the output disturbance model, you can use MPC Designer to specify the type of disturbance
you expect for each UD input. In the app, on the Tuning tab, in the Design section, click Estimation
Models > Input Disturbance Model. In the Input Disturbance Model dialog box, in the Update the
model drop-down list, select specifying a custom model channel by channel.

In the Specifications section, in the Disturbance column, select a noise model for each measured
output channel. The input disturbance model options are the same as the output disturbance model
options.

A common approach is to model unknown events as disturbances adding to the plant MVs. These
disturbances, termed load disturbances in many texts, are realistic in that some unknown events are
failures to set the MVs to the values requested by the controller. You can create a load disturbance
model as follows:

1 Begin with an LTI plant model, Plant, in which all inputs are known (MVs and MDs).
2 Obtain the state-space matrices of Plant. For example:

[A,B,C,D] = ssdata(Plant);

 Adjust Disturbance and Noise Models

3-29

3 Suppose that there are nu MVs. Set Bu = columns of B corresponding to the MVs. Also, set Du =
columns of D corresponding to the MVs.

4 Redefine the plant model to include nu additional inputs. For example:

Plant.B = [B Bu];
Plant.D = [D Du]);

5 To indicate that the new inputs are unmeasured disturbances, use setmpcsignals, or set the
Plant.InputGroup property.

This procedure adds load disturbance inputs without increasing the number of states in the plant
model.

By default, given a plant model containing load disturbances, the Model Predictive Control Toolbox
software creates an input disturbance model that generates nym step-like load disturbances. If nym >
nu, it also creates an output disturbance model with integrated white noise adding to (nym – nu)
measured outputs. If nym < nu, the last (nu – nym) load disturbances are zero by default. You can modify
these defaults using MPC Designer.

You can also view or modify the input disturbance model from the command line using getindist
and setindist respectively.

Restrictions
As discussed in “Controller State Estimation” on page 2-2, the plant, disturbance, and noise models
combine to form a state observer, which must be detectable using the measured plant outputs. If not,
the software displays a command-window error message when you attempt to use the controller.

This limitation restricts the form of the disturbance and noise models. If any models are defined as
anything other than white noise with a static gain, their model states must be detectable. For
example, an integrated white noise disturbance adding to an unmeasured OV would be undetectable.
MPC Designer prevents you from choosing such a model. Similarly, the number of measured
disturbances, nym, limits the number of step-like UD inputs from an input disturbance model.

By default, the Model Predictive Control Toolbox software creates detectable models. If you modify
the default assumptions (or change nym) and encounter a detectability error, you can revert to the
default case.

Disturbance Rejection Tuning
During the design process, you can tune the disturbance rejection properties of the controller.

1 Before any controller tuning, define scale factors for each plant input and output variable (see
“Specify Scale Factors” on page 1-29). In the context of disturbance and noise modeling, this
makes the default assumption of unit-variance white noise inputs more likely to yield good
performance.

2 Initially, keep the disturbance models in their default configuration.
3 After tuning the cost function weights (see “Tune Weights” on page 1-43), test your controller

response to an unmeasured disturbance input other than a step disturbance at the plant output.
Specifically, if your plant model includes UD inputs, simulate a disturbance using one or more of
these. Otherwise, simulate one or more load disturbances, that is, a step disturbance added to a
designated MV. Both MPC Designer and the sim command support such simulations.

3 Controller Refinement

3-30

4 If the response in the simulations is too sluggish, try one or more of the following to produce
more aggressive disturbance rejection:

• Increase all disturbance model gains by a multiplicative factor. In MPC Designer, do this by
increasing the magnitude of each disturbance. If this helps but is insufficient, increase the
magnitude further.

• Decrease the measurement noise gains by a multiplicative factor. In MPC Designer, do this
by increasing the measurement noise magnitude. If this helps but is insufficient, increase the
magnitude further.

• In MPC Designer, in the Tuning tab, drag the State Estimation slider to the right. Moving
towards Faster state estimation simultaneously increases the gains for disturbance models
and decreases the gains for noise models.

If this helps but is insufficient, drag the slider further to the right.
• Change one or more disturbances to model that requires a more aggressive controller

response. For example, change the model from white noise disturbance to a step-like
disturbance.

Note Changing the disturbances in this way adds states to disturbance model, which can
cause violations of the state observer detectability restriction.

5 If the response is too aggressive, and in particular, if the controller is not robust when its
prediction of known events is inaccurate, try reversing the previous adjustments.

See Also
Apps
MPC Designer

Functions
setmpcsignals | getindist | setindist | getoutdist | setoutdist

More About
• “MPC Prediction Models”
• “Controller State Estimation” on page 2-2
• “Design Controller Using MPC Designer”

 Adjust Disturbance and Noise Models

3-31

Custom State Estimation
Model Predictive Control Toolbox™ software allows you to override the default controller state
estimation method.

To do so, you can use the following methods:

• You can override the default Kalman gains, and , using the setEstimator function. To obtain
the default values from the controller use getEstimator. These commands assume that the
columns of and are in the engineering units of the measured plant outputs. Internally, the
software converts them to dimensionless form.

• You can use the custom estimation option, which skips all Kalman gain calculations within the
controller. When the controller operates, at each control interval you must use an external
procedure to estimate the controller states and provide these state estimates to the controller.

Custom state estimation is not supported in MPC Designer. For more information see “Controller
State Estimation” on page 2-2 and “Implement Custom State Estimator Equivalent to Built-In Kalman
Filter” on page 3-37.

Define Plant Model

Consider the case of a double integrator plant for which all of the plant states are measurable. In
such a case, you can provide the measured states to the MPC controller rather than have the
controller estimate the states.

The linear open-loop plant model is a double integrator.

plant = tf(1,[1 0 0]);

Design MPC Controller

Create the controller object with a sample time of 0.1 seconds, a prediction horizon of 10 steps, and
control horizon of 3 steps.

Ts=0.1;
mpcobj = mpc(plant,Ts,10,3);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Specify actuator saturation limits as manipulated variable constraints.

mpcobj.MV = struct('Min',-1,'Max',1);

Configure the controller to use custom state estimation.

setEstimator(mpcobj,'custom');

Simulate Controller

Initialize variables to store the closed-loop responses.

Tf = round(5/Ts);
YY = zeros(Tf,1);
UU = zeros(Tf,1);

3 Controller Refinement

3-32

Prepare the plant used in the simulation by converting it to a discrete-time model and setting the
initial state.

sys = c2d(ss(plant),Ts);
xsys = [0;0];

Get an handle to the mpcstate object that is used to store the controller states.

xmpc = mpcstate(mpcobj);

-->Converting the "Model.Plant" property of "mpc" object to state-space.
-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Iteratively simulate the closed-loop response using the mpcmove function.

For each simulation step:

• Obtain the plant output, y, from the current state.
• Store the plant output.
• Set the plant state in the mpcstate object to the current measured state values, xsys, using the

handle xmpc. For plants in which the state is not measurable, a state estimation must be provided
by an observer. When using the built-in estimator, this is not needed.

• Compute the MPC control action, u, passing in the mpcstate object and the output reference, 1.
• Store the control signal.
• Update the plant state.

for t = 0:Tf

 y = sys.C*xsys; % plant equations: output
 YY(t+1) = y;

 xmpc.Plant = xsys; % state estimation

 u = mpcmove(mpcobj,xmpc,[],1); % y is not needed
 UU(t+1) = u;

 xsys = sys.A*xsys + sys.B*u; % plant equations: next state
end

Plot the simulation results.

figure
subplot(2,1,1)
plot(0:Ts:5,YY)
title('y')
subplot(2,1,2)
plot(0:Ts:5,UU)
title('u')

 Custom State Estimation

3-33

Simulate closed-loop control of the linear plant model in Simulink. For this model, the controller
mpcobj is specified in the MPC Controller block.

mdl = 'mpc_customestimation';
open_system(mdl)
sim(mdl)

3 Controller Refinement

3-34

The closed-loop responses for the MATLAB and Simulink simulations are identical.

fprintf('\nDifference between simulations in MATLAB and Simulink is %g\n',norm(UU-u));

Difference between simulations in MATLAB and Simulink is 6.77858e-14

Close the Simulink model.

bdclose(mdl)

See Also
getEstimator | setEstimator

 Custom State Estimation

3-35

More About
• “Controller State Estimation” on page 2-2
• “Implement Custom State Estimator Equivalent to Built-In Kalman Filter” on page 3-37

3 Controller Refinement

3-36

Implement Custom State Estimator Equivalent to Built-In
Kalman Filter

This example shows how to design and implement a custom state estimator that is equivalent to the
built-in Kalman Filter automatically designed by a linear MPC controller.

Overview

The linear MPC controller provided by Model Predictive Control Toolbox software includes a default
state estimator to facilitate controller implementation. For a linear time-invariant (LTI) MPC
controller whose prediction model never changes at run-time, the default state estimator is an LTI
Kalman filter. This filter is automatically designed using the prediction model specified in the MPC
object, and it generally works for many MPC applications. However, to achieve satisfactory results in
some cases, you must customize or replace the Kalman filter. To do so, you can perform custom state
estimation; that is, bypass the built-in estimator and provide estimated states directly to the MPC
controller as run-time signals, x[k|k].

One common approach to designing a custom state estimator is to first implement one that is
equivalent to the built-in Kalman filter. You can then use it as a starting point for customization, for
example by modifying its structure or tuning its parameters. In this example, you first explore a
simple LTI MPC controller to understand how the built-in Kalman filter is generated. You then
implement an equivalent estimator in Simulink using either core Simulink blocks or the Kalman Filter
block included with Control System Toolbox software.

Design LTI MPC for Plant Running at Specific Operating Point

Assume that you have a continuous-time, single-input, single-output nonlinear plant. The plant has
two states and you want to design an LTI MPC controller at a steady-state operating point.

Specify the state, input, and output values at this operating point.

x0 = [1.6931; 4.3863];
u0 = 7.7738;
y0 = 0.5;

You can obtain a linear plant model at the operating point in several ways, such as system
identification and linearization. For this example, assume that G is the resulting linear plant model.

G = ss([-2 1;-9.7726 -1.3863],[0;1],[0.5 0],0);

To use the plant for custom state estimation, discretize the plant model with a sample time of 0.1.

Ts = 0.1;
Gd = c2d(G,Ts);

Create an LTI MPC controller using the linear plant model.

mpcobj = mpc(G,Ts);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Set the nominal values of the internal plant model to reflect the steady-state operating point.

 Implement Custom State Estimator Equivalent to Built-In Kalman Filter

3-37

mpcobj.Model.Nominal.Y = y0;
mpcobj.Model.Nominal.U = u0;
mpcobj.Model.Nominal.X = x0;

Make the controller less aggressive by reducing the output tuning weight from 1 to 0.2. Use default
values for other controller parameters.

mpcobj.Weights.OutputVariables = 0.2;

Automatic Design of Built-in Kalman Filter

As a feedback controller, one important task of an MPC controller is to fully reject disturbances at run
time, that is, the steady-state error at the plant output is zero in the presence of a disturbance. MPC
controllers use a disturbance model to define the disturbance to be rejected. The states of the
disturbance model reflect the presence of such a disturbance at run time.

Since the most common disturbance is an unmeasured step disturbance added at the plant output,
MPC controller is configured to reject such a disturbance by default. To be more specific, MPC uses a
discrete-time integrator with dimensionless unity gain as the default output disturbance model. Its
input, w, is white noise with zero-mean and unit variance. You can examine the default disturbance
model using the getoutdist function.

God = getoutdist(mpcobj);

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

In other words, MPC expects to reject a random step-like disturbance at the plant output with an
expected magnitude of 1 (after scaling). In this example, keep this default output disturbance model.

To get the overall prediction model used by the MPC controller, Gpred, augment the plant model with
the disturbance model. The measured output seen by MPC now becomes the sum of plant output and
disturbance model output. Be aware that the white noise input value w is not an input to the
prediction model because w is unmeasured.

A = blkdiag(Gd.A,God.A);
Bu = [Gd.B; 0];
Cm = [Gd.C God.C];
D = Gd.D;
Gpred = ss(A,Bu,Cm,D,Ts);

Since the MPC controller still needs to know all the prediction model states at run time, including the
integrator state from the output disturbance model, an LTI Kalman Filter is automatically designed to
estimate the three states at run time.

In the default design, the observer used by the Kalman filter is:

x[k+1] = A*x[k] + w[k]
y[k] = Cm*x[k] + v[k]

The MPC controller also assumes the measurement noise at output y is white noise with zero mean
and unit variance after scaling. Therefore, the default measurement noise model is Gmn shown below:

Gmn = ss(1,'Ts',Ts);

3 Controller Refinement

3-38

In this scenario, there are three additive noises in the Kalman filter design: (1) process noise added to
the manipulated variable; (2) process noise added to the input of God; (3) measurement noise added
to the input of Gmn:

 [Gd.B(1) 0 0] [wn1]
 w[k] = [Gd.B(2) 0 0] * [wn2] = B_est * white noise
 [0 God.B 0] [wn3]
 v[k] = [Gd.D God.D Gmn.D] * wn4 = D_est * white noise

B_est = [[Gd.B;0] [0;0;God.B] [0;0;0]];
D_est = [Gd.D God.D Gmn.D];

Therefore, to obtain the noise covariance matrices Q, R, and N, use the following equations.

Q = Expectation{w*ctranspose(w)} = B_est * ctranspose(B_est)
R = Expectation{v*ctranspose(v)} = D_est * ctranspose(D_est)
N = Expectation{w*ctranspose(v)} = B_est * ctranspose(D_est)

Q = B_est*B_est';
R = D_est*D_est';
N = B_est*D_est';

You can obtain the gains, L and {M}, using the kalman function.

G = eye(3);
H = zeros(1,3);
[~, L, ~, M] = kalman(ss(A,[Bu G],Cm,[D H],Ts),Q,R,N);

This default Kalman filter design process occurs automatically when you create an MPC controller
object. To obtain the resulting default design, use the getEstimator function.

[L1,M1,A1,Cm1,Bu1] = getEstimator(mpcobj);

These estimator parameters are identical to the ones you previously derived manually.

Implement Equivalent State Estimator in Simulink

At this point, you can build your own Kalman filter in Simulink. One way to build this filter is to use
core Simulink blocks based on the L, M, A, Cm, and Bu.

mdl = 'mpc_KalmanFilter';
load_system(mdl)
open_system([mdl '/State Estimator'])

 Implement Custom State Estimator Equivalent to Built-In Kalman Filter

3-39

Alternatively, you can use the Kalman Filter block provided by Control System Toolbox software. This
block uses the Gpred model as the system model as well as the noise covariance matrices Q, R, and N.

Since the Kalman filter is designed at the nominal operating point and uses deviation variables, the
nominal values need to be subtracted from the Kalman filter input signals, u and y, and added to its
output signal, x[k|k].

Validate that Custom State Estimation Produces the Same Result

The Simulink model contains three MPC control loops that control the same plant.

open_system(mdl);

3 Controller Refinement

3-40

Create a second MPC controller that uses custom state estimation.

mpcobjCSE = mpcobj;
setEstimator(mpcobjCSE,'custom')

Simulate the model.

sim(mdl);
open_system([mdl '/Output']);
open_system([mdl '/Input']);

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Implement Custom State Estimator Equivalent to Built-In Kalman Filter

3-41

3 Controller Refinement

3-42

The simulation result shows that the built-in state estimator and custom state estimators produce the
same result.

You can apply the state estimator derivation in this example to MIMO plants. In addition, when using
adaptive of linear-time-varying (LTV) MPC, the built-in Kalman Filter is LTV where L, M, and the error
covariance matrix P become time-varying. Therefore, the custom state estimator will be more
complicated.

See Also
mpc | getEstimator | setEstimator

Related Examples
• “Adjust Disturbance and Noise Models” on page 3-25
• “Custom State Estimation” on page 3-32

 Implement Custom State Estimator Equivalent to Built-In Kalman Filter

3-43

Manipulated Variable Blocking
Manipulated variable blocking is an alternative to the simpler control horizon concept (see “Choose
Sample Time and Horizons” on page 1-2), and it has many of the same benefits. Manipulated variable
blocking:

• Provides more tuning flexibility
• Can smooth manipulated variable adjustments
• Can improve controller robustness

Specify Blocking Interval Lengths
To use manipulated variable blocking, divide the prediction horizon into a series of blocking intervals
by specifying your control horizon as a vector of block sizes, [m1, m2, …]. The sum of the block sizes
must match the prediction horizon p. If you specify a vector whose sum is:

• Less than the prediction horizon, then the controller adds a blocking interval. The length of this
interval is such that the sum of the interval lengths is p. For example, if p=10 and you specify a
control horizon of m=[1 2 3], then the controller uses four intervals with lengths [1 2 3 4].

• Greater than the prediction horizon, then the intervals are truncated until the sum of the interval
lengths is equal to p. For example, if p=10 and you specify a control horizon of [1 2 3 6 7],
then the controller uses four intervals with lengths [1 2 3 4].

The controller computes M free moves, where M is the number of blocking intervals. The first free
move applies to times k through k+m1-1, the second free move applies from time k+m1 through k
+m1+m2-1, and so on. Here, k is the current control interval.

By default, the controller then holds the manipulated variable constant within each block; that is, the
control moves are piecewise constant across each interval. For example, the following figure shows
the optimal control moves for a control horizon of m=[2 3 2] and prediction horizon of p=7.

3 Controller Refinement

3-44

For each block, the manipulated variable, u, is constant, that is:

• u(0) = u(1)
• u(2) = u(3) = u(4)
• u(5) = u(6)

The recommended approach to blocking is to divide the prediction horizon into 3 to 5 blocks and use
one of the following blocking alternatives:

• Equal block sizes (one-fifth to one-third of the prediction horizon, p)
• Block sizes increasing. For example, with p=20, you can try three blocks with intervals of length

3, 7, and 10.

To test the effects of different manipulated variable blocking configurations, perform closed-loop
simulation tests under the following conditions:

• No constraints
• No prediction error; that is, the controller prediction model should be identical to the plant model

To test each controller for stability and robustness issues, use the review function.

 Manipulated Variable Blocking

3-45

Interpolate Block Moves for Nonlinear MPC
As with a linear MPC controller, when you use manipulated variable blocking, a nonlinear MPC
controller uses piecewise constant blocking intervals by default. This approach is often too restrictive
for optimal path planning applications. To produce a less-restrictive, better-conditioned nonlinear
programming problem, you can specify piecewise linear manipulated variable blocking intervals. To
do so, set the Optimization.MVInterpolationOrder property of your nlmpc controller object to
1.

The following figure shows the optimal control moves for control horizon m=[2 3 2] and prediction
horizon p=7.

In the default piecewise constant case, the computed manipulated variable values of 1, 3, and 2 are
constant over their respective blocking intervals.

In the piecewise linear case, the computed manipulated variable values are linearly interpolated for
the first two blocking intervals and held constant for the final interval.

For more information on nonlinear MPC controllers, see “Nonlinear MPC” on page 9-2.

Note Linear interpolation of blocking moves is not supported for implicit, adaptive, or gain-
scheduled MPC controllers.

3 Controller Refinement

3-46

See Also
mpc | nlmpc

More About
• “Optimization Problem” on page 2-7
• “Design MPC Controller for Plant with Delays” on page 1-52
• “Choose Sample Time and Horizons” on page 1-2
• “Design MPC Controller at the Command Line”
• “Design Controller Using MPC Designer”

 Manipulated Variable Blocking

3-47

Specifying Alternative Cost Function with Off-Diagonal Weight
Matrices

This example shows how to use non-diagonal output weight matrices in a model predictive controller.

Define Plant Model and MPC Controller

The linear plant model has two inputs and two outputs.

plant = ss(tf({1,1;1,2},{[1 .5 1],[.7 .5 1];[1 .4 2],[1 2]}));
[A,B,C,D] = ssdata(plant);
Ts = 0.1; % sampling time
plant = c2d(plant,Ts); % convert to discrete time

Create an MPC controller with prediction and control horizon of 20 and 2 steps, respectively.

mpcobj = mpc(plant,Ts,20,2);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Define constraints on the manipulated variables and their rates.

mpcobj.MV = struct('Min',{-3;-2},'Max',{3;2},'RateMin',{-100;-100},'RateMax',{100;100});

Specify non-diagonal output weights

To define non-diagonal output weights, you must select the alternative cost function instead of the
standard cost function. The alternative cost function allows off-diagonal weighting, but requires the
weights to be identical at each prediction horizon step. For more information on these cost function
see “Optimization Problem” on page 2-7. To select the alternative cost function, you must specify the
weight matrices in cell arrays. For more information, see the section on weights in mpc. Specify non-
diagonal output weight, corresponding to ((y1-r1)-(y2-r2))^2.

OW = [1 -1]'*[1 -1];
mpcobj.Weights.OutputVariables = {OW};

Specify non-diagonal input weights

Non-diagonal input weight, corresponding to (u1-u2)^2.

mpcobj.Weights.ManipulatedVariables = {0.5*OW};

Simulate Using SIM Command

Specify simulation time and reference signal.

Tstop = 30; % simulation time
Tf = round(Tstop/Ts); % number of simulation steps
r = ones(Tf,1)*[1 2]; % reference trajectory

Run the closed-loop simulation.

[y,t,u] = sim(mpcobj,Tf,r);

3 Controller Refinement

3-48

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Plot the results.

subplot(211)
plot(t,y(:,1)-r(1,1)-y(:,2)+r(1,2));grid
title('(y_1-r_1)-(y_2-r_2)');
subplot(212)
plot(t,u);grid
title('u');

The difference between the two manipulated variable errors tends to zero.

Simulate Using Simulink®

Now simulate closed-loop MPC in Simulink. As expected, results are identical.

mdl = 'mpc_weightsdemo';
open_system(mdl);
sim(mdl)

 Specifying Alternative Cost Function with Off-Diagonal Weight Matrices

3-49

3 Controller Refinement

3-50

Close the simulink model.

bdclose(mdl);

See Also
mpc | MPC Controller

More About
• “Optimization Problem” on page 2-7

 Specifying Alternative Cost Function with Off-Diagonal Weight Matrices

3-51

Controller Analysis

• “Review Model Predictive Controller for Stability and Robustness Issues” on page 4-2
• “Compute Steady-State Gain” on page 4-17
• “Extract Controller” on page 4-20
• “Compare Multiple Controller Responses Using MPC Designer” on page 4-22
• “Adjust Input and Output Weights Based on Sensitivity Analysis” on page 4-31
• “Understanding Control Behavior by Examining Optimal Control Sequence” on page 4-37

4

Review Model Predictive Controller for Stability and
Robustness Issues

You can review your model predictive controller design for potential stability and robustness
problems. To do so:

• At the command line, use the review function.
• In MPC Designer, on the Tuning tab, in the Analysis section, click Review Design.

In both cases, the software generates a report that shows the results of the following tests:

• MPC Object Creation — Test whether the controller specifications generate a valid MPC
controller. If the controller is invalid, additional tests are not performed.

• QP Hessian Matrix Validity — Test whether the MPC quadratic programming (QP) problem for
the controller has a unique solution. You must choose cost function parameters (penalty weights)
and horizons such that the QP Hessian matrix is positive-definite.

• Closed-Loop Internal Stability — Extract the A matrix from the state-space realization of the
unconstrained controller, and then calculate its eigenvalues. If the absolute value of each
eigenvalue is less than or equal to 1 and the plant is stable, then your feedback system is
internally stable.

• Closed-Loop Nominal Stability — Extract the A matrix from the discrete-time state-space
realization of the closed-loop system; that is, the plant and controller connected in a feedback
configuration. Then calculate the eigenvalues of A. If the absolute value of each eigenvalue is less
than or equal to 1, then the nominal (unconstrained) system is stable.

• Closed-Loop Steady-State Gains — Test whether the controller forces all controlled output
variables to their targets at steady state in the absence of constraints.

• Hard MV Constraints — Test whether the controller has hard constraints on both a manipulated
variable and its rate of change, and if so, whether these constraints may conflict at run time.

• Other Hard Constraints — Test whether the controller has hard output constraints or hard
mixed input/output constraints, and if so, whether these constraints may become impossible to
satisfy at run time.

• Soft Constraints — Test whether the controller has the proper balance of hard and soft
constraints by evaluating the constraint ECR parameters.

• Memory Size for MPC Data — Estimate the memory size required by the controller at run time.

You can also programmatically assess your controller design using the review function. In this case,
the pass/fail testing results are returned as a structure and the testing report is suppressed.

The following example shows how to review your controller design at the command line and address
potential design issues.

Plant Model

The application in this example is a fuel gas blending process. The objective is to blend six gases to
obtain a fuel gas, which is then burned to provide process heating. The fuel gas must satisfy three
quality standards in order for it to burn reliably and with the expected heat output. The fuel gas
header pressure must also be controlled. Thus, there are four controlled output variables. The six
manipulated variables are the feed gas flow rates.

The plant inputs are:

4 Controller Analysis

4-2

1 Natural gas (NG)
2 Reformed gas (RG)
3 Hydrogen (H2)
4 Nitrogen (N2)
5 Tail gas 1 (T1)
6 Tail gas 2 (T2)

The plant outputs are:

1 High heating value (HHV)
2 Wobbe index (WI)
3 Flame speed index (FSI)
4 Header pressure (P)

For more information on the fuel gas blending problem, see [1].

Use the following linear plant model as the prediction model for the controller. This state-space
model, applicable at a typical steady-state operating point, uses the time unit hours.

A = diag([-28.6120 -28.6822 -28.5134 -0.0281 -23.2191 -23.4266 ...
 -22.9377 -0.0101 -26.4877 -26.7950 -27.2210 -0.0083 ...
 -23.0890 -23.0062 -22.9349 -0.0115 -25.8581 -25.6939 ...
 -27.0793 -0.0117 -22.8975 -22.8233 -21.1142 -0.0065]);
B = zeros(24,6);
B(1: 4,1) = [4 4 8 32]';
B(5: 8,2) = [2 2 4 32]';
B(9:12,3) = [2 2 4 32]';
B(13:16,4) = [4 4 8 32]';
B(17:20,5) = [2 2 4 32]';
B(21:24,6) = [1 2 1 32]';
C = [diag([6.1510 7.6785 -5.9312 34.2689]) ...
 diag([-2.2158 -3.1204 2.6220 35.3561]) ...
 diag([-2.5223 1.1480 7.8136 35.0376]) ...
 diag([-3.3187 -7.6067 -6.2755 34.8720]) ...
 diag([-1.6583 -2.0249 2.5584 34.7881]) ...
 diag([-1.6807 -1.2217 1.0492 35.0297])];
D = zeros(4,6);
Plant = ss(A,B,C,D);

By default, all the plant inputs are manipulated variables.

Plant.InputName = {'NG','RG','H2','N2','T1','T2'};

By default, all the plant outputs are measured outputs.

Plant.OutputName = {'HHV','WI','FSI','P'};

To reflect sensor delays, add transport delays to the plant outputs.

Plant.OutputDelay = [0.00556 0.0167 0.00556 0];

Initial Controller Design

Construct an initial model predictive controller based on the design requirements. First, for clarity,
disable MPC command-window messages.

 Review Model Predictive Controller for Stability and Robustness Issues

4-3

MPC_verbosity = mpcverbosity('off');

Create a controller with a:

• Sample time, Ts, of 20 seconds, specified in hours, which corresponds to the sample time of the
sensors.

• Prediction horizon, p, of 39 control intervals, which is approximately equal to the plant settling
time.

• Control horizon, m, that uses four blocked moves with lengths of 2, 6, 12, and 19 control intervals.

Ts = 20/3600;
p = 39;
m = [2 6 12 19];
Obj = mpc(Plant,Ts,p,m);

Specify the output measurement noise and nonzero nominal operating point for the controller.

Obj.Model.Noise = ss(0.001*eye(4));
Obj.Model.Nominal.Y = [16.5 25 43.8 2100];
Obj.Model.Nominal.U = [1.4170 0 2 0 0 26.5829];

Specify lower and upper bounds for each manipulated variable (MV). Since all the manipulated
variables are flow rates of gas streams, their lower bounds are zero. By default, all the MV
constraints are hard (MinECR = 0 and MaxECR = 0).

MVmin = zeros(1,6);
MVmax = [15 20 5 5 30 30];
for i = 1:6
 Obj.MV(i).Min = MVmin(i);
 Obj.MV(i).Max = MVmax(i);
end

Specify lower and upper bounds for the manipulated variable increments. The bounds are set large
enough to allow full range of movement in one interval. By default, all the MV rate constraints are
hard (RateMinECR = 0 and RateMaxECR = 0).

for i = 1:6
 Obj.MV(i).RateMin = -MVmax(i);
 Obj.MV(i).RateMax = MVmax(i);
end

Specify lower and upper bounds for each plant output variable (OV). By default, all the OV constraints
are soft (MinECR = 1 and MaxECR = 1).

OVmin = [16.5 25 39 2000];
OVmax = [18.0 27 46 2200];
for i = 1:4
 Obj.OV(i).Min = OVmin(i);
 Obj.OV(i).Max = OVmax(i);
end

Specify tuning weights for the manipulated variables. MV weights are specified based on the known
costs of each feed stream. Doing so tells MPC controller how to move the six manipulated variables to
minimize the cost of the blended fuel gas. The weights are normalized such that the maximum weight
is approximately 1.0.

Obj.Weights.MV = [54.9 20.5 0 5.73 0 0]/55;

4 Controller Analysis

4-4

Specify tuning weights for the manipulated variable increments. These weights are small relative to
the maximum MV weight so that the MVs are free to vary.

Obj.Weights.MVrate = 0.1*ones(1,6);

Specify tuning weights for the plant output variables. The OV weights penalize deviations from
specified setpoints and would normally be large relative to the other weights. For this example, first
consider the default values, which equal the maximum MV weight.

Obj.Weights.OV = [1,1,1,1];

Improve the Initial Design

Review the initial controller design. The review function generates and opens a report in the Web
Browser window.

review(Obj)

The review summary lists three warnings and one error. Review the warnings and error in order.
Click QP Hessian Matrix Validity and scroll down to the warning, which indicates that the plant
signal magnitudes differ significantly. Specifically, the pressure response is much larger than the
other signals.

 Review Model Predictive Controller for Stability and Robustness Issues

4-5

The OV spans indicated by the specified OV bounds are quite different, and the pressure span is two
orders of magnitude larger than the others. It is good practice to account for the expected differences
in signal magnitudes by specifying MPC scale factors. Since the MVs are already weighted based on
relative cost, specify scale factors only for the OVs.

Calculate OV spans.

OVspan = OVmax - OVmin;

Use these spans as scale factors.

for i = 1:4
 Obj.OV(i).ScaleFactor = OVspan(i);
end

To verify that setting output scale factors fixes the warning, review the updated controller design.

review(Obj)

4 Controller Analysis

4-6

The next warning indicates that the controller does not drive the OVs to their targets at steady state.
To see a list of the nonzero gains, click Closed-Loop Steady-State Gains.

 Review Model Predictive Controller for Stability and Robustness Issues

4-7

The first entry in the list shows that adding a sustained disturbance of unit magnitude to the HHV
output would cause the HHV output to deviate about 0.0860 units from its steady-state target,
assuming no constraints are active. The second entry shows that a unit disturbance in WI would
cause a steady-state deviation, or offset, of about -0.0345 in HHV, and so on.

Since there are six MVs and only four OVs, excess degrees of freedom are available. Therefore, you
might expect the controller to have no steady-state offsets. However, the specified nonzero MV
weights, which were selected to drive the plant toward the most economical operating condition, are
causing nonzero steady-state offsets.

4 Controller Analysis

4-8

Nonzero steady-state offsets are often undesirable but are acceptable in this application because:

1 The primary objective is to minimize the blend cost. The gas quality (HHV, and so on) can vary
freely within the specified OV limits.

2 The small offset gain magnitudes indicate that the impact of disturbances is small.
3 The OV limits are soft constraints. Small, short-term violations are acceptable.

View the second warning by clicking Hard MV Constraints. This warning indicates a potential
conflict in hard constraints.

If an external event causes NG to go far below its specified minimum, the constraint on its rate of
increase might make it impossible to return the NG within bounds in one control interval. In other
words, if you specify both MV.Min and MV.RateMax, the controller would not be able to find an
optimal solution if the most recent MV value is less than (MV.Min - MV.RateMax). Similarly, there is a
potential conflict when you specify both MV.Max and MV.RateMin.

 Review Model Predictive Controller for Stability and Robustness Issues

4-9

An MV constraint conflict would be unlikely in the gas blending application. However, it is good
practice to eliminate the possibility by softening one of the two constraints. Since the MV minimum
and maximum values are physical limits and the increment bounds are not, soften the increment
bounds.

for i = 1:6
 Obj.MV(i).RateMinECR = 0.1;
 Obj.MV(i).RateMaxECR = 0.1;
end

Review the updated controller design.

review(Obj)

The MV constraint conflict warning is fixed.

To view the error message, click Soft Constraints.

4 Controller Analysis

4-10

The delay in the WI output makes it impossible to satisfy bounds on that variable within the first three
control intervals. The WI bounds are soft, but it is poor practice to include unattainable constraints in
a design. Therefore, modify the WI bound specifications such that it is unconstrained until the fourth
prediction horizon step.

Obj.OV(2).Min = [-Inf(1,3) OVmin(2)];
Obj.OV(2).Max = [Inf(1,3) OVmax(2)];

Rerunning the review command verifies that this change eliminates the error message, as shown in
the next step.

Assess Impact of Zero Output Weights

Given that the design requirements allow the OVs to vary freely within their limits, consider removing
their penalty weights.

Obj.Weights.OV = zeros(1,4);

Review the impact of this design change.

review(Obj)

 Review Model Predictive Controller for Stability and Robustness Issues

4-11

There is a new warning regarding the QP Hessian matrix validity. To see the warning details, click QP
Hessian Matrix Validity.

The review flags the zero weights on all four output variables. Since the zero weights are consistent
with the design requirements and the other Hessian tests indicate that the quadratic programming
problem has a unique solution, this warning can be ignored. To see the second new warning, click
Closed-Loop Steady-State Gains. The warning shows another consequence of setting the four OV
weights to zero. When an OV is not penalized by a weight, the controller ignores any output
disturbance added to the OV and passes the disturbance through with no attenuation.

4 Controller Analysis

4-12

Since it is a design requirement, nonzero steady-state offsets are acceptable as long as the controller
is able to hold all the OVs within their specified bounds. Therefore, it is a good idea to examine how
easily the soft OV constraints can be violated when disturbances are present.

Review Soft Constraints

To see a list of soft constraints, click Soft Constraints. In this example, the soft constraints are the
upper and lower bound on each OV.

 Review Model Predictive Controller for Stability and Robustness Issues

4-13

The Impact Factor column shows that using the default MinECR and MaxECR values give the
pressure (P) a much higher priority than the other OVs. To make the priorities more comparable,
increase the pressure constraint ECR values, and adjust the others as well. For example:

Obj.OV(1).MinECR = 0.5;
Obj.OV(1).MaxECR = 0.5;
Obj.OV(3).MinECR = 3;
Obj.OV(3).MaxECR = 3;
Obj.OV(4).MinECR = 80;
Obj.OV(4).MaxECR = 80;

4 Controller Analysis

4-14

Review the impact of this design change.

review(Obj)

In the Sensitivity Ratio column, all the sensitivity ratios are now less than unity, which means that
the soft constraints receive less attention than other terms in the MPC objective function, such as
deviations of the MVs from their target values. Therefore, it is likely that an output constraint
violation would occur.

To give the output constraints higher priority than other MPC objectives, increase the Weights.ECR
parameter from the default, 1e5, to a higher value, which hardens all the soft OV constraints.

Obj.Weights.ECR = 1e8;

Review the impact of this design change.

review(Obj)

The controller is now more sensitive to output constraint violations than to errors in target tracking
by a factor of 100.

 Review Model Predictive Controller for Stability and Robustness Issues

4-15

Review Data Memory Size

To see the estimated memory size required to store the MPC data matrices used on hardware, click
Memory Size for MPC Data.

In this example, if the controller is running using single precision, it requires 250 KB of memory to
store its matrices. If the controller memory size exceeds the memory available on the target system,
redesign the controller to reduce its memory requirements. Alternatively, increase the memory
available on the target system.

Restore the MPC verbosity level.

mpcverbosity(MPC_verbosity);

References

[1] Muller C. J., I. K. Craig, and N. L. Ricker. "Modeling, validation, and control of an industrial fuel
gas blending system." Journal of Process Control. Vol. 21, Number 6, 2011, pp. 852-860.

See Also
review

4 Controller Analysis

4-16

Compute Steady-State Gain
This example shows how to analyze the steady-state performance of a model predictive controller
using cloffset. This command assumes that no constraint is active, and calculates the steady-state
output sensitivity matrix of the closed loop, which is the DC gain from plant output disturbances
(using a sustained 1-unit disturbance step) to controlled plant outputs. When this matrix is zero the
controller is able to reject constant output disturbances and track constant setpoint with zero offsets
in steady-state.

Define a state-space plant model with two inputs and two outputs. This plant represents the
linearized model of a Continuously Stirred Tank Reactor (CSTR) where the first measured output is
the concentration of a key reactant, the second measured output is the temperature in the reactor.
For more information see “CSTR Model”.

A = [-0.0285 -0.0014; -0.0371 -0.1476];
B = [-0.0850 0.0238; 0.0802 0.4462];
C = [0 1; 1 0];
D = zeros(2,2);
CSTR = ss(A,B,C,D);

CSTR.InputGroup.MV = 1;
CSTR.InputGroup.UD = 2;

Create an MPC controller for the defined plant, with a sampling time of one second.

MPCobj = mpc(CSTR,1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
 for output(s) y1 and zero weight for output(s) y2

As the last output line specifies, the cost function default output weights is 1 for the first output and 0
for the second one:

MPCobj.W.OutputVariables

ans = 1×2

 1 0

The software automatically adds an integrator as output disturbance model for each measured
output, in order of decreasing output weight, unless this causes the plant state to become
unobservable. For this plant, only an integrator on the first output is added:

getoutdist(MPCobj)

-->Converting model to discrete time.
-->The "Model.Disturbance" property of "mpc" object is empty:
 Assuming unmeasured input disturbance #2 is integrated white noise.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
 Assuming no disturbance added to measured output channel #2.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Compute Steady-State Gain

4-17

ans =

 A =
 x1
 x1 1

 B =
 u1
 x1 1

 C =
 x1
 MO1 1
 MO2 0

 D =
 u1
 MO1 0
 MO2 0

Sample time: 1 seconds
Discrete-time state-space model.

Compute the closed-loop, steady-state gain matrix for the closed loop system.

DCgain = cloffset(MPCobj)

DCgain = 2×2

 0.0000 -0.0000
 2.3272 1.0000

DCgain(i,j) is the closed loop static gain from output disturbance j to controlled plant output i.
The first column of DCgain shows that a disturbance applied to the first measured output (key
reactant concentration) only affects the second output (reactor temperature). The second column
shows that a disturbance applied to the second measured output passes unmitigated through the
closed loop and is fully measured at the second plant output. In other words, the closed loop is not
able to compensate for a disturbance applied to the second output.

The fact that both entries in the first row of DCgain are zeros means that the controller is able to
completely reject disturbances that affect this output (and therefore the tracking of any given
setpoint reference on this output would be perfect). This happens because the cost function weight
for the first output is nonzero, and because the built-in estimator includes the integrator added as
disturbance model on the first output.

On the other hand, since the cost function weight for the second output is 0, (and also because there
is no integrator added as a disturbance model on this output) the controller does not try to reject
disturbances affecting the second output, as shown by the second row of DCgain. This also means
that the controller would be unable to track any reference setpoint on this output.

See Also
cloffset | mpc

4 Controller Analysis

4-18

More About
• “MPC Prediction Models”

 Compute Steady-State Gain

4-19

Extract Controller
This example shows how to obtain an LTI representation of an unconstrained MPC controller using
ss. You can use this to analyze the frequency response and performance of the controller.

Define a plant model. For this example, use the CSTR model described in “Design Controller Using
MPC Designer”.

A = [-0.0285 -0.0014; -0.0371 -0.1476];
B = [-0.0850 0.0238; 0.0802 0.4462];
C = [0 1; 1 0];
D = zeros(2,2);
CSTR = ss(A,B,C,D);

CSTR.InputGroup.MV = 1;
CSTR.InputGroup.UD = 2;
CSTR.OutputGroup.MO = 1;
CSTR.OutputGroup.UO = 2;

Create an MPC controller for the defined plant using the same sample time, prediction horizon, and
tuning weights described in “Design MPC Controller at the Command Line”.

MPCobj = mpc(CSTR,1,15);

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
 for output(s) y1 and zero weight for output(s) y2

MPCobj.W.ManipulatedVariablesRate = 0.3;
MPCobj.W.OutputVariables = [1 0];

Extract the LTI state-space representation of the controller.

MPCss = ss(MPCobj);

-->Converting model to discrete time.
-->The "Model.Disturbance" property of "mpc" object is empty:
 Assuming unmeasured input disturbance #2 is integrated white noise.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Convert the original CSTR model to discrete form using the same sample time as the MPC controller.

CSTRd = c2d(CSTR,MPCss.Ts);

Create an LTI model of the closed-loop system using feedback. Use the manipulated variable and
measured output for feedback, indicating a positive feedback loop. Using negative feedback would
lead to an unstable closed-loop system, because the MPC controller is designed to use positive
feedback.

CLsys = feedback(CSTRd,MPCss,1,1,1);

You can then analyze the resulting feedback system. For example, verify that all closed-loop poles are
within the unit circle.

poles = eig(CLsys)

4 Controller Analysis

4-20

poles = 6×1 complex

 0.5513 + 0.2700i
 0.5513 - 0.2700i
 0.6131 + 0.1110i
 0.6131 - 0.1110i
 0.9738 + 0.0000i
 0.9359 + 0.0000i

You can also view the system frequency response.

bode(CLsys)

See Also
ss | mpc | feedback

More About
• “Design MPC Controller at the Command Line”

 Extract Controller

4-21

Compare Multiple Controller Responses Using MPC Designer
This example shows how to compare multiple controller responses using MPC Designer. In
particular, controllers with different output constraint configurations are compared.

Define Plant Model

Create a state-space model of your plant, and specify the MPC signal types.

A = [-0.0285 -0.0014; -0.0371 -0.1476];
B = [-0.0850 0.0238; 0.0802 0.4462];
C = [0 1; 1 0];
D = zeros(2,2);

plant = ss(A,B,C,D);
plant = setmpcsignals(plant,'MV',1,'UD',2,'MO',1,'UO',2);

Open MPC Designer, and import the plant model.

mpcDesigner(plant)

The app adds the specified plant to the Data Browser along with a default controller, mpc1, and a
default simulation scenario, scenario1.

4 Controller Analysis

4-22

Define Simulation Scenario

Configure a disturbance rejection simulation scenario.

In MPC Designer, on the MPC Designer tab, click Edit Scenario > scenario1.

In the Simulation Scenario dialog box, specify a Simulation duration of 40 seconds.

In the Reference Signals table, in the Signal drop-down lists, select Constant to hold the setpoints
of both outputs at their nominal values.

In the Unmeasured Disturbances table, in the Signal drop-down list, select Step. Use the default
Time and Step values.

This scenario simulates a unit step change in the unmeasured input disturbance at a time of 1
second.

Click OK.

The app runs the updated simulation scenario and updates the controller response plots. In the
Output Response plots, the default controller returns the measured output, MO1, to its nominal
value, however the control action causes an increase in the unmeasured output, UO1.

 Compare Multiple Controller Responses Using MPC Designer

4-23

Create Controller with Hard Output Constraints

Suppose that the control specifications indicate that such an increase in the unmeasured disturbance
is undesirable. To limit the effect of the unmeasured disturbance, create a controller with a hard
output constraint.

Note In practice, using hard output constraints is not recommended. Such constraints can create an
infeasible optimization problem when the output variable moves outside of the constraint bounds due
to a disturbance.

In the Data Browser, in the Controllers section, right-click mpc1, and select Copy.

The app creates a copy of the default controller and adds it to the Data Browser.

Double-click each controller and rename them as follows.

4 Controller Analysis

4-24

Right-click the mpcHard controller, and select Tune (make current). The app adds the mpcHard
controller response to the Input Response and Output Response plots.

On the Tuning tab, in the Controller section, mpcHard is selected as the current MPC Controller
being tuned.

In the Design section, click Constraints.

In the Constraints dialog box, in the Output Constraints section, in the Max column, specify a
maximum output constraint of 3 for the unmeasured output (UO).

By default, all output constraints are soft, that is the controller can allow violations of the constraint
when computing optimal control moves.

To make the unmeasured output constraint hard, click Constraint Softening Settings, and enter a
MaxECR value of 0 for the UO. This setting places a strict limit on the controller output that cannot
be violated.

 Compare Multiple Controller Responses Using MPC Designer

4-25

Click OK.

The response plots update to reflect the new mpcHard configuration. In the Output Response plot,
in the UO1 plot, the mpcHard response is limited to a maximum of 3. As a trade-off, the controller
cannot return the MO1 response to its nominal value.

Tip If the plot legends are blocking the response signals, you can drag the legends to different
locations.

Create Controller with Soft Output Constraints

Suppose the deviation of MO1 from its nominal value is too large. You can soften the output
constraint for a compromise between the two control objectives: MO1 output tracking and UO1
constraint satisfaction.

On the Tuning tab, in the Analysis section, click Store Controller to save a copy of mpcHard in the
Data Browser.

In the Data Browser, in the Controllers section, rename mpcHard_Copy to mpcSoft.

On the Tuning tab, in the Controller section, in the MPC Controller drop-down list, select
mpcSoft as the current controller.

4 Controller Analysis

4-26

The app adds the mpcSoft controller response to the Input Response and Output Response plots.

In the Design section, click Constraints.

In the Constraints dialog box, in the Output Constraints section, enter a MaxECR value of 100 for
the UO to soften the constraint.

Click OK.

 Compare Multiple Controller Responses Using MPC Designer

4-27

The response plots update to reflect the new mpcSoft configuration. In the Output Response plot,
mpcSoft shows a compromise between the previous controller responses.

Remove Default Controller Response Plot

To compare the two constrained controllers only, you can remove the default unconstrained controller
from the input and output response plots.

On the MPC Designer tab, in the Result section, click Compare Controllers > mpcNone.

4 Controller Analysis

4-28

The app removes the mpcNone responses from the Input Response and Output Response plots.

 Compare Multiple Controller Responses Using MPC Designer

4-29

You can toggle the display of any controller in the Data Browser except for controller currently
being tuned. Under Compare Controllers, the controllers with displayed responses are indicated
with check marks.

See Also
MPC Designer

More About
• “Specify Constraints” on page 1-5
• “Design Controller Using MPC Designer”
• “Design MPC Controller in Simulink”

4 Controller Analysis

4-30

Adjust Input and Output Weights Based on Sensitivity Analysis
This example shows how to compute numerical derivatives of a cumulative performance index with
respect to the weights of the MPC quadratic cost function, and use these derivatives to improve
performance.

Define Plant Model

Create a state-space model for the plant.

plant = ss(tf({1,1,2;1 -1 -1},{[1 0 0],[1 0 0],[1 1];[1 2 8],[1 3],[1 1 3]}),'min');

The model is continuous-time and has 3 inputs (assumed to be manipulated variables), 2 outputs
(assumed to be both measurable), and 8 state variables.

Design MPC Controller

Create an MPC controller with a sample time of 0.1, a prediction horizon of 20 steps, and a control
horizon of 3 steps.

mpcobj = mpc(plant,0.1,20,3);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Set constraints on manipulated variables and their rates of change.

for i = 1:3
 mpcobj.MV(i).Min = -2;
 mpcobj.MV(i).Max = 2;
 mpcobj.MV(i).RateMin = -4;
 mpcobj.MV(i).RateMax = 4;
end

Display the default cost function weights for the output variables, manipulated variables and
manipulated variables rate.

mpcobj.Weights.OutputVariables

ans = 1×2

 1 1

mpcobj.Weights.ManipulatedVariables

ans = 1×3

 0 0 0

mpcobj.Weights.ManipulatedVariablesRate

ans = 1×3

 0.1000 0.1000 0.1000

 Adjust Input and Output Weights Based on Sensitivity Analysis

4-31

Performance Evaluation Setup

Define a closed-loop cumulative performance index as the weighted Integral of the Square Error (ISE)
between the plant signals and their references, calculated in the interval from 0 to Tstop seconds.

The weights, which reflect the desired closed-loop behavior, must be contained in a structure with the
same fields as the Weights property of an MPC object.

PerformanceWeights = mpcobj.weights;

In this example, output tracking is more important than keeping the manipulated variable values low,
therefore, define relatively higher weights on the output error, slightly higher weights on the
manipulated variable rate, and keep the default weights on the manipulated variable values.

PerformanceWeights.OutputVariables = [100 100];
PerformanceWeights.ManipulatedVariablesRate = [1 1 1];

Note that PerformanceWeights is used only to calculate the cumulative performance index. It is
not related to the weights specified inside the MPC controller object. Therefore the cumulative
performance index is not related to the quadratic cost function that the MPC controller tries to
minimize by choosing the manipulated variable values. Indeed, the performance index is based on a
closed loop simulation until a time that is generally different than the prediction horizon, while the
MPC controller calculates the moves which minimize its internal cost function up to the prediction
horizon and in open loop fashion. Furthermore, even when the performance index is chosen to be of
ISE type, its weights should be squared to match the weights defined in the MPC cost function.

Setup Simulation Parameters and Signals

In this example, you calculate the cumulative performance index sensitivity within a setpoint tracking
scenario.

Tstop = 80; % number of time steps to be simulated
r = ones(Tstop,1)*[1 1]; % set point reference signals
v = []; % no disturbance is added
simopt = mpcsimopt; % create simulation options object
simopt.PlantInitialState = zeros(8,1); % set plant initial state

Calculate Sensitivities

Calculate the performance index value and its sensitivities to the mpcobj cost function weights, using
the sensitivity function.

[J1, Sens1] = sensitivity(mpcobj, 'ISE', PerformanceWeights, Tstop, r, v, simopt);

-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Display sensitivities with respect to the weights for the output error signals, ∂
∂Wy

J.

Sens1.OutputVariables

ans = 1×2
104 ×

4 Controller Analysis

4-32

 -2.7346 2.7166

Display sensitivities with respect to the weights for the manipulated variable signals, ∂
∂Wu

J.

Sens1.ManipulatedVariables

ans = 1×3

 3.3375 -125.8266 -35.1067

Display sensitivities with respect to the weights for the manipulated variables rate signals, ∂
∂WΔu

J.

Sens1.ManipulatedVariablesRate

ans = 1×3
104 ×

 -0.0007 1.0250 -0.8370

Adjust MPC Weights

Since you want to reduce the closed-loop cumulative performance index J, in this example the
derivatives with respect to output weights show that the weight on y1 should be increased, as the
corresponding derivative is negative, while the weight on y2 should be decreased.

Copy the MPC object to make modification on the new object.

mpcobj_new = mpcobj;

A negative sensitivity suggests increasing the first output weight from 1 to 2.

mpcobj_new.Weights.OutputVariables(1) = 2;

A positive sensitivity suggests decreasing the second output weight from 1 to 0.2.

mpcobj_new.Weights.OutputVariables(2) = 0.2;

Note that the sensitivity analysis only tells you in which direction to change the parameters, but not
by how much. A trial and error procedure to select the appropriate magnitude of the change is
expected.

Verify Performance Changes

Simulate both MPC controllers.

[y1, t1, u1] = sim(mpcobj, Tstop, r, v, simopt);
[y2, t2, u2] = sim(mpcobj_new, Tstop, r, v, simopt);

-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Plot simulation results for both controllers.

 Adjust Input and Output Weights Based on Sensitivity Analysis

4-33

% plot plant outputs
h1 = figure;
subplot(211)
plot(t2,r(:,1),t1,y1(:,1),t2,y2(:,1));grid
legend('reference','original tuning','new tuning')
title('Output #1')
subplot(212)
plot(t2,r(:,2),t1,y1(:,2),t2,y2(:,2));grid
legend('reference','original tuning','new tuning')
title('Output #2')

% plot manipulated variables
h2 = figure;
subplot(311)
plot(t1,u1(:,1),t2,u2(:,1));grid
legend('original tuning','new tuning')
title('Manipulated Variable #1')
subplot(312)
plot(t1,u1(:,2),t2,u2(:,2));grid
legend('original tuning','new tuning')
title('Manipulated Variable #2')
subplot(313)
plot(t1,u1(:,3),t2,u2(:,3));grid
legend('original tuning','new tuning')
title('Manipulated Variable #3')

4 Controller Analysis

4-34

Verify Cumulative Performance Index is Reduced

Compute the cumulative performance index for the new controller using the same performance
measure.

J2 = sensitivity(mpcobj_new, 'ISE', PerformanceWeights, Tstop, r, v, simopt);

-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Previous Cumulative Performance Index.

J1

J1 = 1.2865e+05

New Cumulative Performance Index.

J2

J2 = 1.1623e+05

As expected the new value of the cumulative performance index is lower than the old value.

 Adjust Input and Output Weights Based on Sensitivity Analysis

4-35

Use a User-Defined Performance Function

This is an example of how to write a user-defined performance function used by the sensitivity
method. In this example, the custom function mpc_performance_function.m implements the
standard ISE performance index based on PerformanceWeights.

Display the function.

type mpc_performance_function.m

function J = mpc_performance_function(MPCobj, Tsteps, r, PerformanceWeights)
% This is an example of how to write a user defined performance function
% used by the "sensitivity" method. In this example, the code illustrate
% how we use performance weights to compute the cumulative performance index.

% Copyright 1990-2014 The MathWorks, Inc.

% Carry out simulation
[y,t,u] = sim(MPCobj, Tsteps, r);
du = [u(1,:);diff(u)];
% Get Weights in MPCobj
ny = size(MPCobj,'mo') + size(MPCobj,'uo');
nmv = size(MPCobj,'mv');
Wy = PerformanceWeights.OutputVariables(:);Wy=Wy(1:ny);
Wu = PerformanceWeights.ManipulatedVariables(:);Wu=Wu(1:nmv);
Wdu = PerformanceWeights.ManipulatedVariablesRate(:);Wdu=Wdu(1:nmv);
% Set mv target to 0
utarget=zeros(nmv,1);
% Compute J in ISE form
J=0;
aux=(y-r)*Wy;
J=J+aux'*aux;
aux=(u-ones(Tsteps,1)*utarget')*Wu;
J=J+aux'*aux;
aux=du*Wdu;
J=J+aux'*aux;

Use the custom function to calculate the performance index.

J3 = sensitivity(mpcobj,'mpc_performance_function',Tstop,r,PerformanceWeights)

J3 = 1.2865e+05

As expected, for mpcobj, user-defined Cumulative Performance Index J3 has the same value as J1.

See Also
sensitivity | mpc

4 Controller Analysis

4-36

Understanding Control Behavior by Examining Optimal Control
Sequence

This example shows how to inspect the optimized sequence of manipulated variables computed by a
model predictive controller at each sample time.

The plant is a double integrator subject to input saturation.

Design MPC Controller

The basic setup of the MPC controller includes:

• A double integrator as the prediction model
• A prediction horizon of 20
• A control horizon of 10
• Input constraints -1 <= u(t) <= 1

Specify the MPC controller.

Ts = 0.1;
p = 20;
m = 10;
mpcobj = mpc(tf(1,[1 0 0]),Ts,p,m);
mpcobj.MV = struct('Min',-1,'Max',1);
nu = 1;

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Simulate Model in Simulink

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink is required to run this example.')
 return
end

Open the Simulink model, and run the simulation.

mdl = 'mpc_sequence';
open_system(mdl)
sim(mdl)

-->Converting the "Model.Plant" property of "mpc" object to state-space.
-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Understanding Control Behavior by Examining Optimal Control Sequence

4-37

4 Controller Analysis

4-38

The MPC Controller block has an mv.seq output port, which is enabled by selecting the Optimal
control sequence block parameter. This port outputs the optimal control sequence computed by the
controller at each sample time. The output signal is an array with p+1 rows and Nmv columns, where
p is prediction horizon and Nmv is the number of manipulated variables.

In a similar manner, the controller can output the optimal state sequence (x.seq) and the optimal
output sequence (y.seq).

When the simulation stops, the To Workspace block connected to the mv.seq port exports this
control sequence to the MATLAB® workspace, logging the data in the variable useq.

Analyze Optimal Control Sequences

Plot the optimal control sequence at specific time instants.

 Understanding Control Behavior by Examining Optimal Control Sequence

4-39

times = [0 0.2 1 2 2.1 2.2 3 3.5 5];
figure('Name','Optimal sequence history')
for t = 1:9
 ct = times(t)*10+1;
 subplot(3,3,t)
 h = stairs(0:p,useq.signals.values(ct,:));
 h.LineWidth = 1.5;
 hold on
 plot((0:p)+.5,useq.signals.values(ct,:),'*r')
 xlabel('prediction step')
 ylabel('u')
 title(sprintf('Sequence (t=%3.1f)',useq.time(ct)))
 grid
 axis([0 p -1.1 1.1])
 hold off
end

The MPC controller uses the first two seconds to bring the output very close to the set point. The
controller output is at the upper limit (+1) for one second and switches to the lower limit (-1) for the
next second, which is the best control strategy under the input constraints.

bdclose(mdl)

See Also
MPC Controller

4 Controller Analysis

4-40

Controller Simulation

• “Simulating MPC Controller with Plant Model Mismatch” on page 5-2
• “Test MPC Controller Robustness using MPC Designer” on page 5-5
• “Generate Simulink Model from MPC Designer” on page 5-14
• “Test an Existing MPC Controller with Simulink” on page 5-16
• “Signal Previewing” on page 5-19
• “Improving Control Performance with Look-Ahead (Previewing)” on page 5-20
• “Update Constraints at Run Time” on page 5-27
• “Vary Input and Output Bounds at Run Time” on page 5-30
• “Tune Weights at Run Time” on page 5-35
• “Tuning MPC Controller Weights at Run-Time” on page 5-36
• “Setting Time-Varying Weights and Constraints with MPC Designer” on page 5-42
• “Adjust Horizons at Run Time” on page 5-45
• “Evaluate Control Performance Using Run-Time Horizon Adjustment” on page 5-48
• “Switch Controller Online and Offline with Bumpless Transfer” on page 5-57
• “Switching Controllers Based on Optimal Costs” on page 5-67
• “Monitoring Optimization Status to Detect Controller Failures” on page 5-73
• “Simulate MPC Controller with a Custom QP Solver” on page 5-77
• “Use Suboptimal Solution in Fast MPC Applications” on page 5-86
• “Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus Dynamics”

on page 5-93
• “Simulate Linear MPC Controller with Nonlinear Plant using Successive Linearizations”

on page 5-111

5

Simulating MPC Controller with Plant Model Mismatch
This example shows how to simulate a model predictive controller with a mismatch between the
predictive plant model and the actual plant, as well as measured and unmeasured disturbances, using
the sim command.

The predictive plant model has 2 manipulated variables, 2 unmeasured input disturbances, and 2
measured outputs. The actual plant has different dynamics.

Define Plant Model

Define the parameters of the nominal plant which the MPC controller is based on. Systems from MV
to MO and UD to MO are identical.

p1 = tf(1,[1 2 1])*[1 1; 0 1];
plant = ss([p1 p1],'minimal');
plant.InputName = {'mv1','mv2','ud3','ud4'};

Design MPC Controller

Define inputs 1 and 2 as manipulated variables, 3 and 4 as unmeasured disturbances.

plant = setmpcsignals(plant,'MV',[1 2],'UD',[3 4]);
% Create the controller object with sampling period, prediction and control
% horizons:
mpcobj = mpc(plant,1,40,2);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

For unmeasured input disturbances, the MPC controller will use the following unmeasured
disturbance model.

distModel = eye(2,2)*ss(-.5,1,1,0);
mpcobj.Model.Disturbance = distModel;

Define the Real Plant Model Used in Simulation

Define the parameters of the actual plant in closed loop with the MPC controller.

p2 = tf(1.5,[0.1 1 2 1])*[1 1; 0 1];
psim = ss([p2 p2],'minimal');
psim = setmpcsignals(psim,'MV',[1 2],'UD',[3 4]);

Simulate Closed-Loop Response Using the SIM Command

Define reference trajectories and unmeasured disturbances entering the actual plant.

dist = ones(1,2); % unmeasured disturbance signal
refs = [1 2]; % output reference signal
Tf = 20; % total number of simulation steps

Create an MPC simulation options object. This allows you to define both unmeasured disturbances
and a plant different than the one which the MPC controller uses as a prediction model.

5 Controller Simulation

5-2

options = mpcsimopt(mpcobj);
options.unmeas = dist; % unmeasured disturbance signal
options.model = psim; % real plant model

Run the closed-loop MPC simulation with model mismatch and unforeseen unmeasured disturbance
inputs.

sim(mpcobj,Tf,refs,options);

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.
-->Converting model to discrete time.

 Simulating MPC Controller with Plant Model Mismatch

5-3

The closed loop tracking performance is acceptable despite the presence of model mismatches and
unmeasured input disturbances.

See Also
mpc

More About
• “MPC Prediction Models”
• “Test MPC Controller Robustness using MPC Designer” on page 5-5

5 Controller Simulation

5-4

Test MPC Controller Robustness using MPC Designer
This example shows how to test the sensitivity of your model predictive controller to prediction errors
using simulations, within MPC Designer.

It is good practice to test the robustness of your controller to prediction errors. Classical phase and
gain margins are one way to quantify robustness for a SISO application. Robust Control Toolbox™
software provides more sophisticated approaches for MIMO systems. It can also be helpful to assess
robustness by running simulations with selected model mismatches and disturbances.

Define Plant Model

For this example, use the CSTR model described in “Design Controller Using MPC Designer”.

A = [-0.0285 -0.0014; -0.0371 -0.1476];
B = [-0.0850 0.0238; 0.0802 0.4462];
C = [0 1; 1 0];
D = zeros(2,2);
CSTR = ss(A,B,C,D);

Specify the signal names and signal types for the plant.

CSTR.InputName = {'T_c','C_A_i'};
CSTR.OutputName = {'T','C_A'};
CSTR.StateName = {'C_A','T'};
CSTR = setmpcsignals(CSTR,'MV',1,'UD',2,'MO',1,'UO',2);

Open MPC Designer, and import the plant model.

mpcDesigner(CSTR)

The app imports the plant model and adds it to the Data Browser. It also creates a default controller
and a default simulation scenario.

Design Controller

Typically, you would design your controller by specifying scaling factors, defining constraints, and
adjusting tuning weights. For this example, modify the controller sample time, and keep the other
controller settings at their default values.

In MPC Designer, on the Tuning tab, in the Horizon section, specify a Sample time of 0.25
seconds.

 Test MPC Controller Robustness using MPC Designer

5-5

The Input Response and Output Response plots update to reflect the new sample time.

Configure Simulation Scenario

To test controller setpoint tracking and unmeasured disturbance rejection, modify the default
simulation scenario.

In the Data Browser, in the Scenarios sections, right-click scenario1, and select Edit.

In the Simulation Scenario dialog box, specify a Simulation duration of 50 seconds.

In the Reference Signals table, keep the default Ref of T setpoint configuration, which simulates
a unit-step change in the reactor temperature.

To hold the concentration setpoint at its nominal value, in the second row, in the Signal drop-down
list, select Constant.

Simulate a unit-step unmeasured disturbance at a time of 25 seconds. In the Unmeasured
Disturbances table, in the Signal drop-down list, select Step, and specify a Time of 25.

5 Controller Simulation

5-6

Click OK.

 Test MPC Controller Robustness using MPC Designer

5-7

The app runs the simulation scenario, and updates the response plots to reflect the new simulation
settings. For this scenario, the internal model of the controller is used in the simulation. Therefore,
the simulation results represent the controller performance when there are no prediction errors.

Define Perturbed Plant Models

Suppose that you want to test the sensitivity of your controller to plant changes that modify the effect
of the coolant temperature on the reactor temperature. You can simulate such changes by perturbing
element B(2,1) of the CSTR input-to-state matrix.

In the MATLAB Command Window, specify the perturbation matrix.

dB = [0 0;0.05 0];

Create the two perturbed plant models.

perturbUp = CSTR;
perturbUp.B = perturbUp.B + dB;

perturbDown = CSTR;
perturbDown.B = perturbDown.B - dB;

Examine Step Responses of Perturbed Plants

To examine the effects of the plant perturbations, plot the plant step responses.

5 Controller Simulation

5-8

step(CSTR,perturbUp,perturbDown)
legend('CSTR','peturbUp','perturbDown')

Perturbing element B(2,1) of the CSTR plant changes the magnitude of the response of the reactor
temperature, T, to changes in the coolant temperature, Tc.

Import Perturbed Plants

In MPC Designer, on the MPC Designer tab, in the Import section, click Import Plant.

In the Import Plant Model dialog box, select the perturbUp and perturbDown models.

 Test MPC Controller Robustness using MPC Designer

5-9

Click Import.

The app imports the models and adds them to the Data Browser.

Define Perturbed Plant Simulation Scenarios

Create two simulation scenarios that use the perturbed plant models.

In the Data Browser, in the Scenarios section, double-click scenario1, and rename it accurate.

Right-click accurate, and click Copy. Rename accurate_Copy to errorUp.

Right-click errorUp, and select Edit.

In the Simulation Scenario dialog box, in the Plant used in simulation drop-down list, select
perturbUp.

Click OK.

Repeat this process for the second perturbed plant.

Copy the accurate scenario and rename it to errorDown.

Edit errorDown, selecting the perturbDown plant.

5 Controller Simulation

5-10

Examine errorUp Simulation Response

On the MPC Designer tab, in the Scenario section, click Plot Scenario > errorUp.

The app creates the errorUp: Input and errorUp: Output tabs, and displays the simulation
response.

To view the accurate and errorUp responses side-by-side, drag the accurate: Output tab into the
left plot panel.

 Test MPC Controller Robustness using MPC Designer

5-11

The perturbation creates a plant, perturbUp, that responds faster to manipulated variable changes
than the controller predicts. On the errorUp: Output tab, in the Output Response plot, the T
setpoint step response has about 10% overshoot with a longer settling time. Although this response is
worse than the response of the accurate simulation, it is still acceptable. The faster plant response
leads to a smaller peak error due to the unmeasured disturbance. Overall, the controller is able to
control the perturbUp plant successfully despite the internal model prediction error.

Examine errorDown Simulation Response

On the MPC Designer tab, in the Scenario section, click Plot Scenario > errorDown.

The app creates the errorDown: Input and errorDown: Output tabs, and displays the simulation
response.

To view the accurate and errorDown responses side-by-side, click the accurate: Output tab in the
left display panel.

5 Controller Simulation

5-12

The perturbation creates a plant, perturbDown, that responds slower to manipulated variable
changes than the controller predicts. On the errorDown: Output tab, in the Output Response plot,
the setpoint tracking and disturbance rejection are worse than for the unperturbed plant.

Depending on the application requirements and the real-world potential for such plant changes, the
degraded response for the perturbDown plant may require modifications to the controller design.

See Also
mpc | MPC Designer

More About
• “Design Controller Using MPC Designer”
• “Test an Existing MPC Controller with Simulink” on page 5-16
• “Simulating MPC Controller with Plant Model Mismatch” on page 5-2

 Test MPC Controller Robustness using MPC Designer

5-13

Generate Simulink Model from MPC Designer
This topic shows how to generate a Simulink model that uses the current model predictive controller
to control its internal plant model.

To create a Simulink model:

1 In the MPC Designer app, interactively design and tune your model predictive controller.
2 On the Tuning tab, in the Analysis section, click the Export Controller arrow .

Alternatively, on the MPC Designer tab, in the Result section, click Export Controller.
3

Under Export Controller, click Generate Simulink Model .

The app exports the current MPC controller and its internal plant model to the MATLAB
workspace and creates a Simulink model that contains an MPC Controller block and a Plant block

Also, default step changes in the output setpoints are added to the References block.

Use the generated model to validate your controller design. The generated model serves as a
template for moving easily from the MATLAB design environment to the Simulink environment.

You can also use the Simulink model to generate code and deploy it for real-time control applications.
For more information, see “Generate Code and Deploy Controller to Real-Time Targets” on page 10-
2.

See Also
MPC Designer | MPC Controller

5 Controller Simulation

5-14

More About
• “Generate Code and Deploy Controller to Real-Time Targets” on page 10-2
• “Design MPC Controller in Simulink”
• “Generate MATLAB Code from MPC Designer” on page 1-89

 Generate Simulink Model from MPC Designer

5-15

Test an Existing MPC Controller with Simulink
This topic shows how to test an existing model predictive controller by adding it to a Simulink model.

1 Open your Simulink model.
2 Add an MPC Controller block to the model.
3 If your controller includes measured disturbances, add the md inport to the MPC Controller

block.

Double-click the MPC Controller block.

In the Block Parameters dialog box, on the General tab, select Measured disturbance (md).

Click OK.
4 Connect the plant and controller signals in the Simulink model. Connect:

• The plant inputs to the manipulated variable (mv) inport of the MPC Controller block.
• The plant measured outputs to the measured output (mo) inport of the MPC Controller block.
• The measured disturbances, if any, to the plant and to the measured disturbance (md) inport

of the MPC Controller block.
• Any unmeasured disturbances or unmeasured outputs to their corresponding plant inport and

outport.
• The reference signals to the reference (ref) inport of the MPC Controller block.
• Connect any signal that you would like to visualize (such for example the plant outputs) to

Scope blocks.

5 Controller Simulation

5-16

5 Specify the controller.

Double-click the MPC Controller block.

In the Block Parameters dialog box, in the MPC Controller field, specify the name of an mpc
controller from the MATLAB workspace.

Click OK.
6 (Optional) Modify the controller.

After specifying a controller in the MPC Controller block, you can modify the controller:

• Using MPC Designer:

• In the Block Parameters dialog box, click Design.

 Test an Existing MPC Controller with Simulink

5-17

• In MPC Designer, tune the controller parameters.
• In the MPC Designer tab, in the Result section, click Update and Simulate > Update

Block Only.

The app exports the updated controller to the MATLAB workspace.
• Using commands to modify the controller object in the MATLAB workspace.

7 Run the Simulink model. Verify that the simulation terminates without errors and that the signals
in the loop behave as expected.

Tip If you do not have a Simulink model of your plant, you can generate one that uses your MPC
controller to control its internal plant model. For more information, see “Generate Simulink Model
from MPC Designer” on page 5-14.

See Also
mpc | MPC Controller | MPC Designer

More About
• “Design MPC Controller in Simulink”
• “Design MPC Controller at the Command Line”
• “Generate Simulink Model from MPC Designer” on page 5-14

5 Controller Simulation

5-18

Signal Previewing
By default, a model predictive controller assumes that the current reference and measured
disturbance signals remain constant during the controller prediction horizon. By doing so, the
controller emulates a conventional feedback controller.

However, as shown in “Optimization Problem” on page 2-7, these signals can vary within the
prediction horizon. If your application allows you to anticipate trends in such signals, an MPC
controller with signal previewing can improve reference tracking, measured disturbance rejection, or
both.

The following Model Predictive Control Toolbox commands provide previewing options:

• sim
• mpcmove
• mpcmoveAdaptive

For Simulink, the following blocks support previewing:

• MPC Controller
• Adaptive MPC Controller
• Multiple MPC Controllers

In MPC Designer, you can specify whether simulation scenarios use previewing. When editing a
scenario in the Simulation Scenario dialog box, select the Preview references or Preview
measured disturbances options.

See Also

More About
• “Update Constraints at Run Time” on page 5-27
• “Improving Control Performance with Look-Ahead (Previewing)” on page 5-20

 Signal Previewing

5-19

Improving Control Performance with Look-Ahead (Previewing)
This example shows how to design a model predictive controller with look-ahead (previewing) on
reference and measured disturbance trajectories.

Define Plant Model

Define the plant model as a linear time invariant system with two inputs (one manipulated variable
and one measured disturbance) and one output.

plant = ss(tf({1,1},{[1 .5 1],[1 1]}),'min');

Get the state-space matrices of the plant model, set a sampling time of 0.2 s, get the discrete-time
matrices, and specify the initial condition.

[A,B,C,D] = ssdata(plant); % continuous time ss realization
Ts = 0.2; % sampling time
[Ad,Bd,Cd,Dd] = ssdata(c2d(plant,Ts)); % discrete time ss realization
x0 = [0;0;0]; % initial condition

Design Model Predictive Controller

Define type of input signals.

plant = setmpcsignals(plant,'MV',1,'MD',2);

Create the mpc object.

p = 20; % prediction horizon
m = 10; % control horizon
mpcobj = mpc(plant,Ts,p,m);
% Specify MV constraints.
mpcobj.MV = struct('Min',0,'Max',2);
% Specify weights
mpcobj.Weights = struct('MV',0,'MVRate',0.1,'Output',1);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Simulate Closed Loop Using the sim Command

Tstop = 30; % simulation time.
time = (0:Ts:(Tstop+p*Ts))'; % time vector
r = double(time>10); % reference signal
v = -double(time>20); % measured disturbance signal

Use the mpcsimopt object to turn on previewing feature in the closed-loop simulation.

params = mpcsimopt(mpcobj);
params.MDLookAhead='on';
params.RefLookAhead='on';

Simulate in MATLAB® with the MPC Toolbox sim command.

YY1 = sim(mpcobj,Tstop/Ts+1,r,v,params);

5 Controller Simulation

5-20

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Simulate Using the mpcmove Command

Create array to store the closed-loop outputs.

YY2 = [];
% Create variables to store current states of plant and controller
x = x0; % initial plant state
xmpc = mpcstate(mpcobj); % pointer to current controller state

Start simulation loop

for ct=0:round(Tstop/Ts)
 % Plant equations: output update
 y = C*x + D(:,2)*v(ct+1);
 % Store output signals
 YY2 = [YY2,y]; %#ok<*AGROW>
 % Compute MPC law. Extracts references r(t+1),r(t+2),...,r(t+p) and
 % measured disturbances v(t),v(t+1),...,v(t+p) for previewing.
 u = mpcmove(mpcobj,xmpc,y,r(ct+2:ct+p+1),v(ct+1:ct+p+1));
 % Plant equations: state update
 x = Ad*x+Bd(:,1)*u+Bd(:,2)*v(ct+1);
end

Plot results.

figure
t = 0:Ts:Tstop;
plot(t,r(1:length(t)),'c:',t,YY1,'r-',t,YY2,'bo');
xlabel('Time');
ylabel('Plant Output');
legend({'Reference';'From sim command';'From mpcmove command'},'Location','SouthEast');
grid

 Improving Control Performance with Look-Ahead (Previewing)

5-21

The responses are identical.

Optimal predicted trajectories are returned by mpcmove. Assume to you start from the current state
and have a set-point change to 0.5 in 5 steps, and assume the measured disturbance has disappeared.

r1 = [ones(5,1);0.5*ones(p-5,1)];
v1 = zeros(p+1,1);
[~,Info] = mpcmove(mpcobj,xmpc,y,r1(1:p),v1(1:p+1));

Extract the optimal predicted trajectories and plot them.

topt = Info.Topt;
yopt = Info.Yopt;
uopt = Info.Uopt;
figure
subplot(211)
title('Optimal sequence of predicted outputs')
stairs(topt,yopt);
grid
axis([0 p*Ts -2 2]);
subplot(212)
title('Optimal sequence of manipulated variables')
stairs(topt,uopt);
axis([0 p*Ts -2 2]);
grid

5 Controller Simulation

5-22

Obtain LTI Representation of MPC Controller with Previewing

When the constraints are not active, the MPC controller behaves like a linear controller. You can get
the state-space form of the MPC controller, with y, [r(t+1);r(t+2);...;r(t+p)], and [v(t);v(t+1);...;v(t+p)]
as inputs to the controller.

Get state-space matrices of linearized controller.

LTI = ss(mpcobj,'rv','on','on');
[AL,BL,CL,DL] = ssdata(LTI);

Create array to store closed-loop outputs.

YY3 = [];
% Setup initial state of the MPC controller
x = x0;
xL = [x0;0;0];

Start main simulation loop

for ct=0:round(Tstop/Ts)
 % Plant output update
 y = Cd*x + Dd(:,2)*v(ct+1);
 % Save output and refs value
 YY3 =[YY3,y];
 % Compute the linear MPC control action
 u = CL*xL + DL*[y;r(ct+2:ct+p+1);v(ct+1:ct+p+1)];
 % Note that the optimal move provided by MPC would be: mpcmove(MPCobj,xmpc,y,ref(t+2:t+p+1),v(t+1:t+p+1));

 Improving Control Performance with Look-Ahead (Previewing)

5-23

 % Plant update
 x = Ad*x + Bd(:,1)*u + Bd(:,2)*v(ct+1);
 % Controller update
 xL = AL*xL + BL*[y;r(ct+2:ct+p+1);v(ct+1:ct+p+1)];
end

Plot results.

figure
plot(t,r(1:length(t)),'c:',t,YY3,'r-');
xlabel('Time');
ylabel('Plant Output');
legend({'Reference';'Unconstrained MPC'},'Location','SouthEast');
grid

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end

time = (0:Ts:(Tstop+p*Ts))'; % time vector
r = double(time>10); % reference signal
v = -double(time>20); % measured disturbance signal

5 Controller Simulation

5-24

% Define the reference signal in structure
ref.time = time;
ref.signals.values = r;

% Define the measured disturbance
md.time = time;
md.signals.values = v;

% Open Simulink model
mdl = 'mpc_preview';
open_system(mdl)

% Simulate the model using the Simulink |sim| command
sim(mdl,Tstop);

Plot results.

figure
t = 0:Ts:Tstop;
plot(t,r(1:length(t)),'c:',t,YY1,'r-',t,YY2,'bo',t,ySL,'gx');
xlabel('Time');
ylabel('Plant Output');
legend({'Reference';'From sim command';'From mpcmove command';'From Simulink'},'Location','SouthEast');
grid

 Improving Control Performance with Look-Ahead (Previewing)

5-25

The responses are identical.

bdclose('mpc_preview')

See Also
mpc | MPC Controller

More About
• “Signal Previewing” on page 5-19

5 Controller Simulation

5-26

Update Constraints at Run Time
To compensate for changing operating conditions, you can update constraints on plant inputs and
outputs at run time. You can update the saturation limits for input and output signals as well as linear
mixed input/output constraints.

Run-time constraint updating supports code generation.

Update Bounds on Input and Output Signals at Run Time
You can update the bounds on plant input and output signals at run time. To do so, first define initial
signal bounds when designing your MPC controller. For more information, see “Specify Constraints”
on page 1-5. If you do not specify initial bounds for a given signal, you cannot constrain that signal at
run time.

To update signal bounds during a command-line simulation, at each control interval, set the
corresponding properties of an mpcmoveopt object before calling mpcmove, mpcmoveAdaptive, or
mpcmoveMultiple. To update:

• Manipulated variable lower and upper bounds, set the MVMin and MVMax properties, respectively.
• Output variable lower and upper bounds, set the OutputMin and OutputMax properties,

respectively.

You can also update input and output bounds at run-time in Simulink for the MPC Controller, Adaptive
MPC Controller, and Multiple MPC Controllers blocks. The following table lists the bounds, their
associated block ports, and the block parameters to select to enable the ports.

Bounds Port Name Block Parameter
Lower bounds on manipulated
variables

umin Lower MV Limits

Upper bounds on manipulated
variables

umax Upper MV Limits

Lower bounds on output
variables

ymin Lower OV Limits

Upper bounds on output
variables

ymax Upper OV Limits

Connect signals to these ports that specify the run-time values of the bounds for each variable. If
there is more than one manipulated variable or output variable, connect a vector signal to the
corresponding ports. For example, if there are three output variables, connect a three-element vector
signal to the ymin and ymax ports. If a variable is unconstrained in the controller object, then the
connected signal value is ignored.

Tip For any constraint that you set to -Inf or Inf, either across the whole prediction horizon
(uniform) or at individual prediction horizon steps (time-varying), the corresponding variable remains
unconstrained at run time; that is, you cannot modify it.

However, you can keep a variable unconstrained, so as to not distort your offline controller design,
while maintaining the ability to add constraints online. To do so, set the bound to a large value when

 Update Constraints at Run Time

5-27

you create the controller. Do not use realmax as the large value, since doing so causes numerical
issues at run time. You can then modify the constraint at run-time.

If you define time-varying constraints in your controller object, the new bounds are applied to the
first finite values in the prediction horizon. All subsequent prediction horizon values adjust to
maintain the same profile across the prediction horizon; that is, they change by the same amount.

For an example, see “Vary Input and Output Bounds at Run Time” on page 5-30.

Update Mixed Input/Output Constraints at Run Time
You can update mixed input/output constraints at run time. For more information on these
constraints, see “Constraints on Linear Combinations of Inputs and Outputs” on page 3-5. This
feature is not supported for gain-scheduled MPC controllers.

You can update the following constraint matrices during your simulation:

• E — Manipulated variable constraint constant
• F — Controlled output constraint constant
• G — Mixed input/output constraint constant
• S — Measured disturbance constraint constant

To do so, first define initial constraints using the setconstraint command. You cannot add
additional constraints at run time.

To update mixed input/output constraints during a command-line simulation, in each control interval
set the CustomConstraint property of an mpcmoveopt object before calling mpcmove or
mpcmoveAdaptive. Specify CustomConstraint as a structure with E, F, G, and S fields. Specify
each field as an array with dimensions that match the initial constraint arrays specified using
setconstraint.

To update mixed input/output constraints during a Simulink simulation, select the Custom
constraints parameter of your MPC Controller or Adaptive MPC Controller block. Doing so adds E,
F, G, and S input ports to the block. The S input port is added only if your controller has measured
disturbances.

Connect matrix signals to these ports that specify the run-time values for each array. If you define E,
F, G, or S in your MPC controller, you must connect a signal to the corresponding input port, and that
signal must have the same dimensions as the array specified in the controller. If an array is not
defined in the controller object, use a zero matrix with the correct size.

For an example that updates mixed input/output constraints for an adaptive MPC controller, see
“Obstacle Avoidance Using Adaptive Model Predictive Control” on page 7-38.

See Also
setconstraint | mpcmove | mpcmoveAdaptive | mpcmoveExplicit

More About
• “Tune Weights at Run Time” on page 5-35

5 Controller Simulation

5-28

• “Constraints on Linear Combinations of Inputs and Outputs” on page 3-5
• “Vary Input and Output Bounds at Run Time” on page 5-30

 Update Constraints at Run Time

5-29

Vary Input and Output Bounds at Run Time
This example shows how to vary input and output saturation limits in real-time control. For both
command-line and Simulink® simulations, you specify updated input and output constraints at each
control interval. The MPC controller then keeps the input and output signals within their specified
bounds.

For more information on updating linear constraints at run time, see “Update Constraints at Run
Time” on page 5-27.

Create Plant Model and MPC Controller

Define a SISO discrete-time plant with sample time Ts.

Ts = 0.1;
plant = c2d(tf(1,[1 .8 3]),Ts);
[A,B,C,D] = ssdata(plant);

Create an MPC controller with specified prediction horizon, p, control horizon, c, and sample time,
Ts. Use plant as the internal prediction model.

p = 10;
m = 4;
mpcobj = mpc(plant,Ts,p,m);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Specify controller tuning weights.

mpcobj.Weights.MV = 0;
mpcobj.Weights.MVrate = 0.5;
mpcobj.Weights.OV = 1;

For this example, the upper and lower bounds on the manipulated variable, and the upper bound on
the output variable are varied at run time. To do so, you must first define initial dummy finite values
for these constraints in the MPC controller object. Specify values for MV.Min, MV.Max, and OV.Max.

At run time, these constraints are changed using an mpcmoveopt object at the command line or
corresponding input signals to the MPC Controller block.

mpcobj.MV.Min = 1;
mpcobj.MV.Max = 1;
mpcobj.OV.Max = 1;

Simulate Model Using Simulink

Open Simulink Model.

mdl = 'mpc_varbounds';
open_system(mdl)

5 Controller Simulation

5-30

In this model, the input minimum and maximum constraint ports (umin and umax) and the output
maximum constraint port (ymax)of the MPC Controller block are enabled. Since the minimum output
bound is unconstrained, the ymin input port is disabled.

Configure the output setpoint, ref, and simulation duration, Tsim.

ref = 1;
Tsim = 20;

Run the simulation, and view the input and output responses in the I/O scope.

sim(mdl)
open_system([mdl '/I//O'])

-->Converting the "Model.Plant" property of "mpc" object to state-space.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Vary Input and Output Bounds at Run Time

5-31

Simulate Model at Command Line

Specify the initial state of the plant and controller.

x = zeros(size(B,1),1);
xmpc = mpcstate(mpcobj);

Store the closed-loop output, manipulated variable, and state trajectories of the MPC controller in
arrays YY, UU, and XX, respectively.

YY = [];
UU = [];
XX = [];

Create an mpcmoveopt object for specifying the run-time bound values.

options = mpcmoveopt;

Run the simulation loop.

for t = 0:round(Tsim/Ts)
 % Store the plant state.
 XX = [XX; x];

5 Controller Simulation

5-32

 % Compute and store the plant output. There is no direct feedthrough
 % from the input to the output.
 y = C*x;
 YY = [YY; y'];

 % Get the reference signal value from the data output by the Simulink
 % simulation.
 ref = yout.Data(t+1,2);

 % Update the input and output bounds. For consistency, use the
 % constraint values output by the Simulink simulation.
 options.MVMin = uout.Data(t+1,2);
 options.MVMax = uout.Data(t+1,3);
 options.OutputMax = yout.Data(t+1,3);

 % Compute the MPC control action.
 u = mpcmove(mpcobj,xmpc,y,ref,[],options);

 % Update the plant state and store the input signal value.
 x = A*x + B*u;
 UU = [UU; u'];
end

Compare Simulation Results

Plot the input and output signals from both the Simulink and command-line simulations along with
the changing input and output bounds.

figure
subplot(1,2,1)
plot(0:Ts:Tsim,[UU uout.Data(:,1) uout.Data(:,2) uout.Data(:,3)])
grid
title('Input')
legend('Command-line input','Simulink input','Lower bound',...
 'Upper bound','Location','Southeast')
subplot(1,2,2)
plot(0:Ts:Tsim,[YY yout.Data(:,1) yout.Data(:,3)])
grid
title('Output')
legend('Command-line output','Simulink output','Upper bound',...
 'Location','Southeast')

 Vary Input and Output Bounds at Run Time

5-33

The results of the command-line and Simulink simulations are the same. The MPC controller keeps
the input and output signals within the specified bounds as the constraints change throughout the
simulation.

bdclose(mdl)

See Also
MPC Controller

More About
• “Update Constraints at Run Time” on page 5-27

5 Controller Simulation

5-34

Tune Weights at Run Time
There are two ways to perform tuning experiments using Model Predictive Control Toolbox software:

• Modify your controller object off line (by changing weights, etc.) and then test the modified object.
• Change tuning weights as the controller operates, as described in this topic.

In Simulink, the following blocks support online tuning:

• MPC Controller
• Adaptive MPC Controller
• Multiple MPC Controllers. In this case, the tuning signals apply to the active controller object,

which might switch as the control system operates. If the objects in your set employ different
weights, you should tune them off line.

The Explicit MPC Controller and Multiple Explicit MPC Controllers blocks do not support online
tuning because a weight change requires a complete revision of the explicit MPC control law, which is
computationally intensive.

To tune weights during command-line simulations, first create an mpcmoveopt object, and specify the
corresponding tuning weight properties. Then pass this object to either mpcmove,
mpcmoveAdaptive, or mpcmoveMultiple.

This table lists the weights that you can tune at run time and their corresponding Simulink block
ports and mpcmoveopt properties. For more information on tuning weights, including tuning tips, see
“Tune Weights” on page 1-43.

Tune weights for Simulink Block Port mpcmoveopt Property
Output variables y.wt OutputWeights
Manipulated variables u.wt MVWeights
Manipulated variable increment du.wt MVRateWeights
Slack variable for constraint
softening

ecr.wt ECRWeight

For the output variable, manipulated variable, and manipulated variable increment weights, you can
specify time-varying weights at run time; that is, tuning weights that vary over the prediction horizon.
To do so, specify the tuning weights as arrays.

Note To vary weights at run time, you must specify time-varying weights when you create your MPC
controller object. In other words, if you configure your controller to use constant weights over the
prediction horizon, you cannot specify time-varying weights at run time.

See Also

More About
• “Signal Previewing” on page 5-19
• “Tuning MPC Controller Weights at Run-Time” on page 5-36

 Tune Weights at Run Time

5-35

Tuning MPC Controller Weights at Run-Time
This example shows how to vary the weights on outputs, inputs, and ECR slack variable for soft
constraints at run-rime, using either Simulink® or mpcmove.

The weights specified in the MPC object are overridden by the weights supplied to the MPC
Controller block. If a weight signal is not connected to the MPC Controller block, then the
corresponding weight is the one specified in the MPC object.

Define Plant Model

Define a multivariable discrete-time linear system with no direct I/O feedthrough, and assume input
#4 is a measured disturbance and output #4 is unmeasured.

Ts = 0.1; % sampling time
plant = tf({1,[1 1],5,2;3,[1 5],1,0;0,0,1,[1 1];2,[1 -1],0,0},...
 {[1 1 1],[1 3 4 5],[1 10],[1 5];
 [1 1],[1 2],[1 2 8],[1 1];
 [1 2 1],[1 3 1 1],[1 1],[1 2];
 [1 1],[1 3 10 10],[1 10],[1 1]});
plant = c2d(ss(plant),Ts);
plant.D = 0;

% display size of the plant.
size(plant)

State-space model with 4 outputs, 4 inputs, and 17 states.

Design MPC Controller

Specify input and output signal types.

plant = setmpcsignals(plant,'MD',4,'UO',4);
% Create the controller object with sampling period, prediction and control
% horizons:
p = 20; % Prediction horizon
m = 3; % Control horizon
mpcobj = mpc(plant,Ts,p,m);

% note that default weights are assumed on inputs, input rates, and outputs

-->Assuming unspecified input signals are manipulated variables.
-->Assuming unspecified output signals are measured outputs.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
 for output(s) y1 y2 y3 and zero weight for output(s) y4

Specify MV constraints.

mpcobj.MV(1).Min = -6;
mpcobj.MV(1).Max = 6;
mpcobj.MV(2).Min = -6;
mpcobj.MV(2).Max = 6;
mpcobj.MV(3).Min = -6;
mpcobj.MV(3).Max = 6;

5 Controller Simulation

5-36

Define Time-Varying Signals using Structure Format

Define reference signal.

Tstop = 10;
ref = [1 0 3 1];
r = struct('time',(0:Ts:Tstop)');
N = numel(r.time);
r.signals.values=ones(N,1)*ref;

Define measured disturbance.

v = 0.5;

OV weights are linearly increasing with time, except for output #2 that is not weighted.

ywt.time = r.time;
ywt.signals.values = (1:N)'*[.1 0 .1 .1];

MV rate weights are decreasing linearly with time.

duwt.time = r.time;
duwt.signals.values = (1-(1:N)/2/N)'*[.1 .1 .1];

ECR weight increases exponentially with time.

ECRwt.time = r.time;
ECRwt.signals.values = 10.^(2+(1:N)'/N);

Simulate Using Simulink®

Start simulation.

mdl = 'mpc_onlinetuning';
open_system(mdl); % Open Simulink(R) Model
sim(mdl); % Start Simulation

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->Assuming output disturbance added to measured output channel #3 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Tuning MPC Controller Weights at Run-Time

5-37

5 Controller Simulation

5-38

Simulate Using MPCMOVE Command

Define real plant and MPC state object.

[A,B,C,D] = ssdata(plant);
x = zeros(size(plant.B,1),1); % Initial state of the plant
xmpc = mpcstate(mpcobj); % Handle to state of the MPC controller

Store the closed-loop MPC trajectories in arrays YY,UU,XX.

YY = []; UU = []; XX = [];

Use mpcmoveopt object to provide weights at run-time.

options = mpcmoveopt;

Start simulation.

for t = 0:N-1,
 % Store states
 XX = [XX,x]; %#ok<*AGROW>
 % Compute and store plant output (no feedthrough from MV to Y)
 y = C*x+D(:,4)*v;
 YY = [YY;y'];
 % Obtain reference signal
 ref = r.signals.values(t+1,:)';
 % Update |mpcmoveopt| object with run-time weights
 options.MVRateWeight = duwt.signals.values(t+1,:);
 options.OutputWeight = ywt.signals.values(t+1,:);
 options.ECRWeight = ECRwt.signals.values(t+1,:);
 % Compute and sore control action
 u = mpcmove(mpcobj,xmpc,y(1:3),ref,v,options);

 Tuning MPC Controller Weights at Run-Time

5-39

 UU = [UU;u'];
 % Update plant states
 x = A*x + B(:,1:3)*u + B(:,4)*v;
end

Plot and Compare Simulation Results.

figure(1);
clf;
subplot(121)
plot(0:Ts:Tstop,[YY ysim])
grid
title('output')
subplot(122)
plot(0:Ts:Tstop,[UU usim])
grid
title('input')

Compare input and output signals.

norm(UU-usim)
norm(YY-ysim)

% results are identical except for numerical errors.

ans =

5 Controller Simulation

5-40

 5.5397e-11

ans =

 1.1288e-11

bdclose(mdl);

See Also
MPC Controller

More About
• “Tune Weights at Run Time” on page 5-35

 Tuning MPC Controller Weights at Run-Time

5-41

Setting Time-Varying Weights and Constraints with MPC
Designer

Time-Varying Weights
As explained in “Optimization Problem” on page 2-7, the wy, wu, and w∆u weights can change from
one step in the prediction horizon to the next. Such a time-varying weight is an array containing p
rows, where p is the prediction horizon, and either ny or nu columns (number of OVs or MVs).

Using time-varying weights provides additional tuning possibilities. However, it complicates tuning.
Recommended practice is to use constant weights unless your application includes unusual
characteristics. For example, an application requiring terminal weights must employ time-varying
weights. See “Terminal Weights and Constraints” on page 3-18.

You can specify time-varying weights in MPC Designer. In the Weights dialog box, specify a time-
varying weight as a vector. Each element of the vector corresponds to one step in the prediction
horizon. If the length of the vector is less than p, the last weight value applies for the remainder of
the prediction horizon.

Note For any given input channel, you can specify different vector lengths for Rate Weight and
Weight. However, if you specify a time-varying Weight for any input channel, you must specify a
time-varying Weight for all inputs using the same length weight vectors. Similarly, all input Rate
Weight values must use the same vector length.

5 Controller Simulation

5-42

Also, if you specify a time-varying Weight for any output channel, you must specify a time-varying
Weight for all output using the same length weight vectors.

Time-Varying Constraints
When bounding an MV, OV, or MV increment, you can use a different bound value at each prediction-
horizon step. To do so, specify the bound as a vector of up to p values, where p is the prediction
horizon length (number of control intervals). If you specify n < p values, the nth value applies for the
remaining p – n steps.

You can remove constraints at selected steps by specifying Inf (or -Inf).

If plant delays prevent the MVs from affecting an OV during the first d steps of the prediction horizon
and you must include bounds on that OV, leave the OV unconstrained for the first d steps.

You can specify time-varying constraints in MPC Designer. In the Constraints dialog box, specify a
vector for each time-varying constraint.

See Also

More About
• “Optimization Problem” on page 2-7
• “Terminal Weights and Constraints” on page 3-18

 Setting Time-Varying Weights and Constraints with MPC Designer

5-43

• “Tune Weights at Run Time” on page 5-35
• “Update Constraints at Run Time” on page 5-27
• “Vary Input and Output Bounds at Run Time” on page 5-30

5 Controller Simulation

5-44

Adjust Horizons at Run Time
For both implicit and adaptive MPC controllers, you can adjust the prediction and control horizons
while the controller operates. Doing so can be useful for:

• Efficiently evaluating different horizon choices at run time during prototyping
• Adjusting horizons without redeployment after plant dynamics change significantly, such as in a

batch process

Adjust Horizons in MATLAB
To adjust the horizons at run time from the command line, at each control interval, specify the
following properties of the mpcmoveopt object.

• PredictionHorizon — Run-time prediction horizon signal, specified as a positive integer
• ControlHorizon — Run-time control horizon signal, specified as a positive integer or a vector of

positive integers

You can then pass the mpcmoveopt object to either mpcmove or mpcmoveAdaptive.

Adjust Horizons in Simulink
In Simulink, to adjust the horizons for an MPC Controller or Adaptive MPC Controller block, select
the Adjust prediction horizon and control horizon at run time parameter. Doing so adds the
following input ports to the block:

• p — Run-time prediction horizon signal, specified as a scalar integer signal
• m — Run-time control horizon signal, specified as a scalar or vector signal

You must specify the maximum prediction horizon using the Maximum prediction horizon
parameter. Doing so ensures that the optimal sequence output ports of the block (mv.seq, x.seq,
and y.seq) have constant sizes with pmax+1 rows, where pmax is the maximum prediction horizon.

Code Generation
Run-time horizon tuning supports code generation in both MATLAB and Simulink. Generating code
for a controller that supports run-time horizon changes allows you to tune your horizon values on
your deployed controller hardware.

After tuning the horizon values, to improve the computational efficiency of your final deployed
controller, you can generate code for a constant-horizon controller using the tuned values.

Deploying your controller with run-time horizon tuning enabled significantly increases the
computational load and memory footprint of your MPC application. If you plan to use run-time
horizon tuning only for prototyping to find the proper horizon values, after tuning, ensure that this
feature is disabled. You can then generate code with a constant-horizon controller using the tuned
values.

If your controller uses manipulated variable blocking and you generate code for your controller, the
size of the control horizon vector must remain constant at run-time. In this case, you can still tune the
values within the control horizon vector.

 Adjust Horizons at Run Time

5-45

Note To generate code for a controller that uses run-time horizon tuning, your deployed hardware
target must support dynamic memory allocation. For example, if your embedded system does not
support the malloc C function, then the generated code will not run.

To generate code in MATLAB, set the 'UseVariableHorizon' name-value argument of
getCodeGenerationData to true. At each control interval, you can then specify the horizons
before calling mpcmoveCodeGeneration.
[configData,stateData,onlineData] = getCodeGenerationData(mpcobj,'UseVariableHorizon',true);
...
onlineData.Horizons.p = 10;
onlineData.Horizons.m = 3;
[u,stateData] = mpcmoveCodeGeneration(configData,stateData,onlineData);

Effect on Time-Varying Controller Parameters and Signals
If your application uses controller parameters or signals that vary over the prediction horizon,
adjusting the prediction horizon at run time affects the behavior of these time-varying parameters.

Constraints

If you define time-varying constraints in your controller object, the profile of the constraints across
the prediction horizon does not change at run time. If your run-time prediction horizon value pr is:

• Greater than the length of the constraint profile specified in your controller, then the controller
uses the final value of the constraint profile for the remainder of the prediction horizon

• Less than the length of the constraint profile specified in your controller, then the controller
truncates the constraint profile after pr steps

For more information on adjusting constraints, see “Update Constraints at Run Time” on page 5-27
and “Setting Time-Varying Weights and Constraints with MPC Designer” on page 5-42.

Tuning Weights and Preview Signals

To vary tuning weights or specify signal previews across the prediction horizon, you specify signal
arrays where the rows correspond to prediction horizon steps.

If you adjust the prediction horizon at run time, it is best practice to define the weight and preview
arrays with N rows, where N is based on the maximum prediction horizon pmax according to the
following table.

At run time, you specify the first pr rows of each signal array (pr+1 rows for measured disturbances).
The controller ignores any extra rows in the arrays.

Signal Type Command-Line Usage Block Input Port Maximum Number
of Rows N

MV tuning weights MVWeights property of
mpcmoveopt

u.wt pma

1

x

MV rate weights MVRateWeights property of
mpcmoveopt

du.wt pmax

5 Controller Simulation

5-46

Signal Type Command-Line Usage Block Input Port Maximum Number
of Rows N

Output weights OutputWeights property of
mpcmoveopt

y.wt pmax

Reference preview Input to mpcmove or
mpcmoveAdaptive

ref pmax

Measured disturbance
preview

Input to mpcmove or
mpcmoveAdaptive

md pmax+1

If you specify any signal array with fewer than pr rows (pr+1 rows for measured disturbances), the
controller uses the values from the final row for the remainder of the prediction horizon.

For more information on tuning weights, see “Tune Weights at Run Time” on page 5-35 and “Setting
Time-Varying Weights and Constraints with MPC Designer” on page 5-42.

For more information on previewing reference or measured disturbance signals, see “Signal
Previewing” on page 5-19.

Model and Nominal Conditions

For a linear time-varying MPC controller, you vary the plant model and nominal conditions across the
prediction horizon by passing arrays to mpcmoveAdaptive or the Adaptive MPC Controller block,
where the first element in each array is the current value and each additional array element
corresponds to a prediction horizon step.

If you adjust the prediction horizon at run time, it is best practice to define the plant model and
nominal condition arrays with pmax+1 elements. At run time, you specify the first pr+1 elements of
each array and the controller ignores the extra elements.

If you specify either array with fewer than pr+1 elements, the controller uses the final element for the
remainder of the prediction horizon.

For more information on linear time-varying MPC, see “Time-Varying MPC” on page 7-49.

See Also
Blocks
MPC Controller | Adaptive MPC Controller

Functions
mpcmoveopt

More About
• “Choose Sample Time and Horizons” on page 1-2
• “Manipulated Variable Blocking” on page 3-44
• “Generate Code and Deploy Controller to Real-Time Targets” on page 10-2

 Adjust Horizons at Run Time

5-47

Evaluate Control Performance Using Run-Time Horizon
Adjustment

This example shows how to adjust prediction and control horizons at run-time to evaluate controller
performance without recreating the controller object or regenerating the code.

Overview of Prediction and Control Horizon Selection

Prediction and control horizons, together with controller sample time, are determined typically before
other MPC settings such as constraints and weights are designed.

There are certain guidelines to help choose the sample time Ts, prediction horizon p, and control
horizon m. For example, assume you want to determine how far the controller should look into the
future. In theory, prediction time should be long enough to capture the dominant dynamic behavior of
the plant but not any longer so as to avoid wasting resources used in computation. In practice, you
often start with a small value and gradually increase it to see how control performance improves.
When it plateaus, stop.

Control horizon determines how many decision variables MPC uses in optimization. If the value is too
small, you don't have enough degrees of freedom to achieve a satisfactory performance. On the other
hand, if the value is too large, both computation load and memory footprint increase significantly with
little performance improvement. Therefore, it is another place you want to try different values and
compare the results.

In this example, we demonstrate how to adjust prediction and control horizons of an MPC Controller
block using its inports and compare control performance after multiple runs of simulation without
recreating MPC controller object used by the block. If the block is running on an embedded system,
you can adjust the horizons in real-time too, without regenerating and redeploying the code.

To run this example, Simulink® and Simulink Control Design™ are required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink is required to run this example.')
 return
end
if ~mpcchecktoolboxinstalled('slcontrol')
 disp('Simulink Control Design is required to run this example.')
 return
end

Linearizing the Nonlinear Plant at Nominal Operating Point

The single-input-single-output nonlinear plant is implemented in Simulink model mpc_nloffsets. At
the nominal operating point, the plant is at steady state with output of -0.5.

plant_mdl = 'mpc_nloffsets';

Use the operspec command from Simulink Control Design to create an operating point specification
object with the desired output value fixed at steady state.

op = operspec(plant_mdl);
op.Outputs.Known = true;
op.Outputs.y = -0.5;

Use the findop command from Simulink Control Design to obtain the nominal operating point.

5 Controller Simulation

5-48

[op_point, op_report] = findop(plant_mdl,op);

 Operating point search report:

opreport =

 Operating point search report for the Model mpc_nloffsets.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

 Min x Max dxMin dx dxMax
 ____ _______ ___ _____ ___________ _____

(1.) mpc_nloffsets/Integrator
 -Inf 0.59453 Inf 0 1.0258e-13 0
(2.) mpc_nloffsets/Integrator2
 -Inf 2.1891 Inf 0 -1.0989e-09 0

Inputs:

 Min u Max
 ____ _______ ___

(1.) mpc_nloffsets/In1
 -Inf -1.1806 Inf

Outputs:

 Min y Max
 ____ ____ ____

(1.) mpc_nloffsets/Out1
 -0.5 -0.5 -0.5

Use the linearize command from Simulink Control Design to linearize the plant at the nominal
operating condition.

plant = linearize(plant_mdl, op_point);

Obtain nominal plant states, output and input.

x0 = [op_report.States(1).x;op_report.States(2).x];
y0 = op_report.Outputs.y;
u0 = op_report.Inputs.u;

The linearized plant is underdamped second order system. Using the damp command, we can find out
the dominant time constant of the plant, which is about 1.7 seconds.

damp(plant)

 Pole Damping Frequency Time Constant
 (rad/seconds) (seconds)

 Evaluate Control Performance Using Run-Time Horizon Adjustment

5-49

 -5.95e-01 + 1.84e+00i 3.07e-01 1.94e+00 1.68e+00
 -5.95e-01 - 1.84e+00i 3.07e-01 1.94e+00 1.68e+00

Designing Default MPC Controller

A simple guideline recommends that the prediction time should at least cover the dominant time
constant (1.7 seconds) and control horizon is 10%~20% of the prediction horizon. Therefore, if we
choose sample time of 0.1, the prediction horizon should be around 17. This gives us a starting point
to choose the default horizons

Ts = 0.1;
p = 20;
m = 4;
mpcobj = mpc(plant,Ts,p,m);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Set nominal values in the controller.

mpcobj.Model.Nominal = struct('X', x0, 'U', u0, 'Y', y0);

Set MV constraint.

mpcobj.MV.Max = 2;
mpcobj.MV.Min = -2;

Since there is little noise in the plant, we reduce the noise model gain to make the default Kalman
filter more aggressive.

mpcobj.Model.Noise = 0.1;

Comparing Performance Between Different Prediction Horizon Choices

The mpc_onlineHorizons model implements the closed-loop control system. Our goal to track a
-0.2 step change in the reference signal with minimum overshoot. We also want the settling time to be
less than 5 seconds.

r0 = -0.7;
mdl = 'mpc_onlineHorizons';
open_system(mdl)

5 Controller Simulation

5-50

In the model, the MPC block has two inports where we can connect prediction horizon signal and
control horizon signal. In each simulation, we vary the prediction horizon value (from 5 to 50) while
keeping the control horizon at 4. We measure both the overshoot (%) and settling time (sec) from the
saved simulation results. Note that the MPC controller object is not changed. Instead, the new
horizon values are supplied as input signals at run-time.

p_choices = 5:5:50;
set_param([mdl '/Control Horizon'],'Value','4')
for p = p_choices
 set_param([mdl '/Prediction Horizon'],'Value',num2str(p))
 sim(mdl,20)
 settling_timeP(p/5) = ...
 find((abs(y.signals.values-r0)<0.01)&(abs([0;diff(y.signals.values)])<0.001),1,'first')*Ts;
 if r0>y0
 overshootP(p/5) = abs((max(y.signals.values)-r0)/r0)*100;
 else
 overshootP(p/5) = abs((min(y.signals.values)-r0)/r0)*100;
 end
end
figure
subplot(2,1,1)
plot(p_choices,overshootP,'*')
xlabel('prediction horizon')
ylabel('overshoot (%)')
title('control horizon = 4')
subplot(2,1,2)
plot(p_choices,settling_timeP,'*')
ylabel('settling time (sec)')
xlabel('prediction horizon')

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

 Evaluate Control Performance Using Run-Time Horizon Adjustment

5-51

As the two plots show above, when prediction horizon increases from 5 to 15, the overshoot drops
from 6% to 3% and settling time increases from 3 seconds to 4 seconds. After that, however, both
overshoot and settling time remain more or less the same. In addition all the settling time values
satisfy the upper bound of 5 seconds. Therefore, we choose the prediction horizon of 15, because it is
the smallest value to achieve satisfactory performance by forming the smallest optimization problem.

Comparing Performance Between Different Control Horizon Choices

After we choose the prediction horizon, we use the same setup to evaluate different control horizon
choices. In each simulation, we vary the control horizon (from 1 to 10) while keeping the prediction
horizon at 15.

c_choices = 1:10;
set_param([mdl '/Prediction Horizon'],'Value','15')
for c = c_choices
 set_param([mdl '/Control Horizon'],'Value',num2str(c))
 sim(mdl,20)
 settling_timeC(c) = ...
 find((abs(y.signals.values-r0)<0.01)&(abs([0;diff(y.signals.values)])<0.001),1,'first')*Ts;
 if r0>y0
 overshootC(c) = abs((max(y.signals.values)-r0)/r0)*100;
 else
 overshootC(c) = abs((min(y.signals.values)-r0)/r0)*100;
 end
end
figure
subplot(2,1,1)

5 Controller Simulation

5-52

plot(c_choices,overshootC,'*')
xlabel('control horizon')
ylabel('overshoot (%)')
title('prediction horizon = 15')
subplot(2,1,2)
plot(c_choices,settling_timeC,'*')
xlabel('control horizon')
ylabel('settling time (sec)')

As the two plots show above, when control horizon increases from 1 to 3, the overshoot drops from
10% to 2%. After that, it increases back to 5% as control horizon grows from 4 to 10. The explanation
is that when control horizon is 1, the controller doesn't have enough degrees of freedom to achieve
reasonable response. When control horizon is 4 or beyond, the controller has more decision variables
such that the first optimal move often becomes more aggressive and thus results in larger overshoot
but shorter settling time. In this example, since the main control goal is to achieve minimum
overshoot, we choose 3 as control horizon.

The model is simulated with prediction horizon = 15 and control horizon = 3. Recall that our original
design choice is prediction horizon = 20 and control horizon = 4 based on a simple guideline, which
is close to our final choice.

set_param([mdl '/Prediction Horizon'],'Value','15')
set_param([mdl '/Control Horizon'],'Value','3')
open_system([mdl '/Input'])
open_system([mdl '/Output'])
sim(mdl)

 Evaluate Control Performance Using Run-Time Horizon Adjustment

5-53

5 Controller Simulation

5-54

Adjusting Horizons in Real-Time on Embedded Systems

The major benefit of using run-time prediction and control horizon inports in MPC and Adaptive MPC
blocks is that you can evaluate and adjust controller performance in real-time without regenerating
code and re-deploying it to the target system. This feature is very helpful at the prototyping stage.

To use run-time horizon adjustment in real time, the target system must support dynamic memory
allocation because as horizons change, the sizes of all that matrices used to construct the
optimization problem change at run-time as well.

You also need to specify the maximum prediction horizon in the block dialog to define the upper
bound of the sizes of these matrices. Therefore, the memory footprint would be large. After finding
the best horizon choices, it is recommended to disable the feature to have efficient code generation
with fixed-size data.

bdclose(mdl)

See Also
MPC Controller

 Evaluate Control Performance Using Run-Time Horizon Adjustment

5-55

More About
• “Adjust Horizons at Run Time” on page 5-45

5 Controller Simulation

5-56

Switch Controller Online and Offline with Bumpless Transfer
This example shows how to obtain bumpless transfer when switching a model predictive controller
from manual to automatic operation or vice versa.

During startup of a manufacturing process, before switching to automatic control, operators adjust
key actuators manually until the plant is near the desired operating point. If not done correctly, the
transfer can cause a bump; that is, a large actuator movement.

In this example, you simulate a Simulink® model that contains a single-input single-output LTI plant
and an MPC Controller block.

A model predictive controller monitors all known plant signals, even when it is not in control of the
actuators. This monitoring improves its state estimates and allows a bumpless transfer to automatic
operation.

In particular, it shows how the ext.mv input signal to the MPC block can be used to keep the internal
MPC state up to date when the operator or another controller is in control.

Define Plant Model

Define linear open-loop dynamic plant model.

num = [1 1];
den = [1 3 2 0.5];
sys = tf(num,den);

The plant is a stable single-input single-output system as seen in its step response.

step(sys)

 Switch Controller Online and Offline with Bumpless Transfer

5-57

Design MPC Controller

Create an MPC controller, specifying the:

• Plant model
• Sample time Ts
• Prediction horizon p
• Control horizon m

Ts = 0.5;
p = 15;
m = 2;
mpcobj = mpc(sys,Ts,p,m);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Define constraints on the manipulated variable.

mpcobj.MV=struct('Min',-1,'Max',1);

Specify the output tuning weight.

mpcobj.Weights.Output=0.01;

5 Controller Simulation

5-58

Open and Configure Simulink Model

Open the Simulink model.

mdl = 'mpc_bumpless';
open_system(mdl)

 Switch Controller Online and Offline with Bumpless Transfer

5-59

5 Controller Simulation

5-60

In this model, the MPC Controller block is already configured for bumpless transfer using the
following controller parameter settings.

• The External manipulated variable parameter is selected. This parameter enables the use of
external manipulated variables by adding the ext.mv inport to the block.

• The Use external signal to enable or disable optimization is selected. This parameter adds a
switch inport for switching off the controller optimization calculations.

To achieve bumpless transfer, the initial states of your plant and controller must be the same, which
is the case for the plant and controller in this example. However, if the initial conditions for your
system do not match, you can set the initial states of the controller to the plant initial states. To do so,
extract the mpcstate object from your controller and set the initial state of the plant.

stateobj = mpcstate(MPC1);
stateobj.Plant = x0;

where x0 is a vector of the initial plant states. Then, set the Initial Controller State parameter of
the MPC Controller block to stateobj.

To simulate switching between manual and automatic operation, the Switching block sends either 1
or 0 to control a switch. When it sends 0, the system is in automatic mode, and the output from the
MPC Controller block goes to the plant. Otherwise, the system is in manual mode, and the signal from
the Operator Commands block goes to the plant.

 Switch Controller Online and Offline with Bumpless Transfer

5-61

In both cases, the actual plant input feeds back to the controller ext.mv inport, unless the plant
input saturates at -1 or 1. The controller constantly monitors the plant output and updates its
estimate of the plant state, even when in manual operation.

This model also shows the optimization switching option. When the system switches to manual
operation, a nonzero signal enters the switch inport of the controller block. The signal turns off the
optimization calculations of the controller, which reduces computational effort.

Simulate Controller in Simulink

Simulate closed-loop control of the linear plant model in Simulink.

sim(mdl)

-->Converting the "Model.Plant" property of "mpc" object to state-space.
-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

5 Controller Simulation

5-62

For the first 90 time units, the Switching Signal is 0, which makes the system operate in automatic
mode. During this time, the controller smoothly drives the controlled plant output from its initial
value, 0, to the desired reference value, -0.5.

The controller state estimator has zero initial conditions as a default, which is appropriate when this
simulation begins. Thus, there is no bump at startup. In general, start the system running in manual
mode long enough for the controller to acquire an accurate state estimate before switching to
automatic mode.

At time 90, the Switching Signal changes to 1. This change switches the system to manual operation
and sends the operator commands to the plant. Simultaneously, the nonzero signal entering the
switch inport of the controller turns off the optimization calculations. While the optimization is turned
off, the MPC Controller block passes the current ext.mv signal to the Controller Output.

Once in manual mode, the operator commands set the manipulated variable to -0.5 for 10 time units,
and then to 0. The Plant Output plot shows the open-loop response between times 90 and 180 when
the controller is deactivated.

At time 180, the system switches back to automatic mode. As a result, the plant output returns to the
reference value smoothly, and a similar smooth adjustment occurs in the controller output.

Turn Off Manipulated Variable Feedback

To examine the controller behavior without manipulated variable feedback, modify the model as
follows:

 Switch Controller Online and Offline with Bumpless Transfer

5-63

• Delete the signals entering the ext.mv and switch inports of the MPC Controller block.
• Delete the Unit Delay block and the signal line entering its inport.
• For the MPC Controller block, clear the External manipulated variable and Use external

signal to enable or disable optimization parameters.

To perform these steps programmatically, use the following commands.

delete_line(mdl,'Switch/1','Unit Delay/1');
delete_line(mdl,'Unit Delay/1','MPC Controller/3');
delete_block([mdl '/Unit Delay']);
delete_line(mdl,'Switching/1','MPC Controller/4');
set_param([mdl '/MPC Controller'],'mv_inport','off');
set_param([mdl '/MPC Controller'],'switch_inport','off');

Adjust the limits of the response plots, and simulate the model.

set_param([mdl '/Yplots'],'Ymin','-1.1~-0.1')
set_param([mdl '/Yplots'],'Ymax','2~1.1')
set_param([mdl '/MVplots'],'Ymin','-0.6~-0.5')
set_param([mdl '/MVplots'],'Ymax','1.1~1.1')
sim(mdl)

5 Controller Simulation

5-64

 Switch Controller Online and Offline with Bumpless Transfer

5-65

The behavior of the system is identical to the original case for the first 90 time units.

When the system switches to manual mode at time 90, the plant behavior is the same as before.
However, the controller tries to hold the plant at the setpoint. So, its output increases and eventually
saturates, as seen in Controller Output. Since the controller assumes that this output is going to the
plant, its state estimates become inaccurate. Therefore, when the system switches back to automatic
mode at time 180, there is a large bump in the Plant Output.

Such a bump creates large actuator movements within the plant. By smoothly transferring from
manual to automatic operation, a model predictive controller eliminates such unwanted movements.

bdclose(mdl)

See Also
MPC Controller

5 Controller Simulation

5-66

Switching Controllers Based on Optimal Costs
This example shows how to use the "optimal cost" outport of the MPC Controller block to switch
between multiple model predictive controllers whose outputs are restricted to discrete values.

Define Plant Model

The linear plant model is as follows::

plant = ss(tf({1,1},{[1 1.2 1],[1 1]}),'min'); % Plant with 2 inputs and 1 output
[A,B,C,D] = ssdata(plant); % Get state-space realization matrices, to be used in Simulink
x0 = [0;0;0]; % Initial plant state

Design MPC Controller

Specify input and output signal types.

plant = setmpcsignals(plant,'MV',1,'MD',2); % First input is manipulated, second is measured disturbance

Design two MPC controllers with the MV constraints of u=-1 and u=1, respectively. Only u at the
current time is quantized. The subsequent calculated control actions may be any value between -1
and 1. The controller uses a receding horizon approach so these values don't actually go to the plants.

Ts = 0.2; % Sampling time
p = 20; % Prediction horizon
m = 10; % Control horizon
mpc1 = mpc(plant,Ts,p,m); % First MPC object
mpc2 = mpc(plant,Ts,p,m); % Second MPC object
% Specify weights
mpc1.Weights = struct('MV',0,'MVRate',.3,'Output',1); % Weights
mpc2.Weights = struct('MV',0,'MVRate',.3,'Output',1); % Weights
% Specify constraints
mpc1.MV = struct('Min',[-1;-1],'Max',[-1;1]); % Constraints on the manipulated variable: u = -1
mpc2.MV = struct('Min',[1;-1],'Max',[1;1]); % Constraints on the manipulated variable: u = 1

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Simulate in Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end
% Specify signals:
Tstop = 40;
ref.time = 0:Ts:(Tstop+p*Ts);
ref.signals.values = double(ref.time>10)'; % Step change in reference signal at time t=10
md.time = ref.time;
md.signals.values = double(md.time>30)'; % Step change in measured disturbance signal at time t=30

Open and simulate the Simulink® model:

 Switching Controllers Based on Optimal Costs

5-67

mdl = 'mpc_optimalcost';
open_system(mdl); % Open Simulink(R) Model
sim(mdl,Tstop); % Start Simulation

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.
-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

5 Controller Simulation

5-68

 Switching Controllers Based on Optimal Costs

5-69

Note that:

• From time 0 to time 10, the control action keeps switching between MPC1 (-1) and MPC2 (+1).
This is because the reference signal is 0 and it requires a controller output at 0 to reach steady
state, which cannot be achieved with either MPC controller.

• From time 10 to 30, MPC2 control output (+1) is chosen because the reference signal becomes +1
and it requires a controller output at +1 to reach steady state (plant gain is 1), which can be
achieved by MPC2.

• From time 30 to 40, control action starts switching again. This is because with the presence of
measured disturbance (+1), MPC1 leads to a steady state of 0 and MPC2 leads to a steady state of
+2, while the reference signal still requires +1.

Simulate Using MPCMOVE Command

Use mpcmove to perform step-by-step simulation and compute current MPC control action:

[Ad,Bd,Cd,Dd] = ssdata(c2d(plant,Ts)); % Discrete-time dynamics
Nsteps = round(Tstop/Ts); % Number of simulation steps

Initialize matrices for storing simulation results

YY = zeros(Nsteps+1,1);
RR = zeros(Nsteps+1,1);
UU = zeros(Nsteps+1,1);
COST = zeros(Nsteps+1,1);
x = x0; % Initial plant state
xt1 = mpcstate(mpc1); % Initial state of the MPC controller #1
xt2 = mpcstate(mpc2); % Initial state of the MPC controller #2

Start simulation.

for td=0:Nsteps
 % Construct signals

5 Controller Simulation

5-70

 v = md.signals.values(td+1);
 r = ref.signals.values(td+1);
 % Plant equations: output update
 y = Cd*x + Dd(:,2)*v;
 % Compute both MPC moves
 options = mpcmoveopt;
 options.OnlyComputeCost = true; % the last input argument tells "mpcmove" to only compute the optimal cost
 [u1,Info1] = mpcmove(mpc1,xt1,y,r,v,options);
 [u2,Info2] = mpcmove(mpc2,xt2,y,r,v,options);
 % Compare the resulting optimal costs and choose the input value
 % corresponding to the smallest cost
 if Info1.Cost<=Info2.Cost
 u = u1;
 cost = Info1.Cost;
 % Update internal MPC state to the correct value
 xt2.Plant = xt1.Plant;
 xt2.Disturbance = xt1.Disturbance;
 xt2.LastMove = xt1.LastMove;
 else
 u = u2;
 cost = Info2.Cost;
 % Update internal MPC state to the correct value
 xt1.Plant = xt2.Plant;
 xt1.Disturbance = xt2.Disturbance;
 xt1.LastMove = xt2.LastMove;
 end
 % Store plant information
 YY(td+1) = y;
 RR(td+1) = r;
 UU(td+1) = u;
 COST(td+1) = cost;
 % Plant equations: state update
 x = Ad*x + Bd(:,1)*u + Bd(:,2)*v;
end

Plot the results of mpcmove to compare with the simulation results obtained in Simulink®:

subplot(131)
plot((0:Nsteps)*Ts,[YY,RR]); % Plot output and reference signals
grid
title('OV and Reference')
subplot(132)
plot((0:Nsteps)*Ts,UU); % Plot manipulated variable
grid
title('MV')
subplot(133)
plot((0:Nsteps)*Ts,COST); % Plot optimal MPC value function
grid
title('Optimal cost')

 Switching Controllers Based on Optimal Costs

5-71

These plots resemble the plots in the scopes in the Simulink® model.

bdclose(mdl);

See Also
MPC Controller

More About
• “Optimization Problem” on page 2-7

5 Controller Simulation

5-72

Monitoring Optimization Status to Detect Controller Failures
This example shows how to use the qp.status outport of the MPC Controller block in Simulink® to
detect controller failures in real time.

Overview of Run-Time Control Monitoring

The qp.status output from the MPC Controller block returns a positive integer when the controller
finds an optimal control action by solving a quadratic programming (QP) problem. The integer value
corresponds to the number of iterations used during optimization. If the QP problem formulated at a
given sample interval is infeasible, the controller will fail to find a solution. In that case, the MV
outport of controller block retains the most recent value and the qp.status outport returns -1. In a
rare case when the maximum number of iteration is reached during optimization, the qp.status
outport returns 0.

In industrial MPC applications, you can detect whether your model predictive controller is in a failure
mode (0 or -1) or not by monitoring the qp.status outport. If an MPC failure occurs, you can use
this signal to switch to a backup control plan.

For more information, see Lane Keeping Assist System and the Optimizer options in the mpc.

This example shows how to setup run-time controller status monitoring in Simulink.

Define Plant Model

The test plant is a single-input, single-output plant with hard limits on both manipulated variable and
controlled output. A load disturbance is added at the plant output. The disturbance consists of a ramp
signal that saturates manipulated variable due to the hard limit on the MV. After saturation occurs,
you lose the control degree of freedom and the disturbance eventually forces the output outside its
upper limit. When that happens, the QP problem formulated by the model predictive controller at run-
time becomes infeasible.

Define the plant model as a simple SISO system with unity static gain.

plant = tf(1,[2 1]);

Define the unmeasured load disturbance. The signal ramps up from 0 to 2 between 1 and 3 seconds,
then ramps down from 2 to 0 between 3 and 5 seconds.

LoadDist = [0 0; 1 0; 3 2; 5 0; 7 0];

Design MPC Controller

Create an MPC object for plant with a sample time of 0.2 seconds.

mpcobj = mpc(plant, 0.2);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Define hard constraints on plant input (MV) and output (OV). By default, all the MV constraints are
hard and OV constraints are soft.

 Monitoring Optimization Status to Detect Controller Failures

5-73

mpcobj.MV.Min = -1;
mpcobj.MV.Max = 1;
mpcobj.OV.Min = -1;
mpcobj.OV.Max = 1;

Configure the upper and lower OV constraints as hard bounds.

mpcobj.OV.MinECR = 0;
mpcobj.OV.MaxECR = 0;

Override the default estimator. This high-gain estimator improves detection of an impending
constraint violation.

setEstimator(mpcobj,[],[0;1])

Simulate Using Simulink

Build the control system in a Simulink model and enable the qp.status outport from the controller
block dialog. Its run-time value is displayed in a Simulink Scope block.

mdl = 'mpc_onlinemonitoring';
open_system(mdl)

Simulate the closed-loop and display the response.

sim(mdl)
open_system([mdl '/Controller Status'])
open_system([mdl '/Response'])

-->Converting the "Model.Plant" property of "mpc" object to state-space.
-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

5 Controller Simulation

5-74

 Monitoring Optimization Status to Detect Controller Failures

5-75

As shown in the response scope, the ramp-up disturbance signal causes the MV to saturate at its
lower bound -1, which is the optimal solution for these situations. After the plant output exceeds the
upper limit, at the next sampling interval (2.6 seconds), the controller realizes that it can no longer
keep the output within bounds (because its MV is still saturated), so it signals controller failure due
to an infeasible QP problem (-1 in the controller status scope). After the output comes back within
bounds, the QP problem becomes feasible again (3.4 seconds). Once the MV is no longer saturated,
normal control behavior returns.

Close the Simulink model.

bdclose(mdl)

See Also

5 Controller Simulation

5-76

Simulate MPC Controller with a Custom QP Solver
You can simulate the closed-loop response of an MPC controller with a custom quadratic
programming (QP) solver in Simulink®.

This example uses an on-line monitoring application, first solving it using the Model Predictive
Control Toolbox™ built-in solver, then using a custom solver that uses the quadprog (Optimization
Toolbox) solver from the Optimization Toolbox™.

Implementing a custom QP solver in this way does not support code generation. For more information
on generating code for a custom QP solver, see “Simulate and Generate Code for MPC Controller with
Custom QP Solver” on page 10-56. For more information on QP Solvers, see “QP Solvers” on page 2-
17.

In the on-line monitoring example, the qp.status output of the MPC Controller block returns a
positive integer whenever the controller obtains a valid solution of the current run-time QP problem
and sets the mv output. The qp.status value corresponds to the number of iterations used to solve
this QP.

If the QP is infeasible for a given control interval, the controller fails to find a solution. In that case,
the mv outport stays at its most recent value and the qp.status outport returns -1. Similarly, if the
maximum number of iterations is reached during optimization (rare), the mv outport also freezes and
the qp.status outport returns 0.

Real-time MPC applications can detect whether the controller is in a "failure" mode (0 or -1) by
monitoring the qp.status outport. If a failure occurs, a backup control plan should be activated.
This is essential if there is any chance that the QP could become infeasible, because the default
action (freezing MVs) may lead to unacceptable system behavior, such as instability. Such a backup
plan is, necessarily, application-specific.

MPC Application with Online Monitoring

The plant used in this example is a single-input, single-output system with hard limits on both the
manipulated variable (MV) and the controlled output (OV). The control objective is to hold the OV at a
setpoint of 0. An unmeasured load disturbance is added to the OV. This disturbance is initially a ramp
increase. The controller response eventually saturates the MV at its hard limit. Once saturation
occurs, the controller can do nothing more, and the disturbance eventually drives the OV above its
specified hard upper limit. When the controller predicts that it is impossible to force the OV below
this upper limit, the run-time QP becomes infeasible.

Define the plant as a first-order SISO system with unity gain.

Plant = tf(1,[2 1]);

Define the unmeasured load disturbance. The signal ramps up from 0 to 2 between 1 and 3 seconds,
then ramps back down from 2 to 0 between 3 and 5 seconds.

LoadDist = [0 0; 1 0; 3 2; 5 0; 7 0];

Design MPC Controller

Create an MPC object using the model of the test plant. The chosen control interval is about one
tenth of the dominant plant time constant.

 Simulate MPC Controller with a Custom QP Solver

5-77

Ts = 0.2;
Obj = mpc(Plant, Ts);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Define hard constraints on the plant input (MV) and output (OV). By default, all the MV constraints
are hard and OV constraints are soft.

Obj.MV.Min = -0.5;
Obj.MV.Max = 1;
Obj.OV.Min = -1;
Obj.OV.Max = 1;
Obj.OV.MinECR = 0; % change OV lower limit from soft to hard
Obj.OV.MaxECR = 0; % change OV upper limit from soft to hard

Generally, hard OV constraints are discouraged and are used here only to illustrate how to detect an
infeasible QP. Hard OV constraints make infeasibility likely, in which case a backup control plan is
essential. This example does not include a backup plan. However, as shown in the simulation, the
default action of freezing the single MV is the best response in this simple case.

Simulate Using Simulink with Built-in QP Solver

To run this example, Simulink and the Optimization Toolbox are required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink is required to run this example.')
 return
end
if ~mpcchecktoolboxinstalled('optim')
 disp('The Optimization Toolbox is required to run this example.')
 return
end

Build the control system in a Simulink model and enable the qp.status outport by selecting the
Optimization status parameter of the MPC Controller block. Display the run-time qp.status value
in the Controller Status scope.

mdl = 'mpc_onlinemonitoring';
open_system(mdl)

5 Controller Simulation

5-78

Simulate the closed-loop response using the default Model Predictive Control Toolbox QP solver.

open_system([mdl '/Controller Status'])
open_system([mdl '/Response'])
sim(mdl)

-->Converting the "Model.Plant" property of "mpc" object to state-space.
-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Simulate MPC Controller with a Custom QP Solver

5-79

5 Controller Simulation

5-80

Explanation of the Closed-Loop Response

As shown in the response scope, at 1.4 seconds, the increasing disturbance causes the MV to saturate
at its lower bound of -0.5, which is the QP solution under these conditions (because the controller is
trying to hold the OV at its setpoint of 0).

The OV continues to increase due to the ramp disturbance and, at 2.2 seconds, exceeds the specified
hard upper bound of 1.0. Since the QP is formulated in terms of predicted outputs, the controller still
predicts that it can bring OV back below 1.0 in the next move and therefore the QP problem is still
feasible.

Finally, at t = 3.2 seconds, the controller predicts that it can no longer move the OV below 1.0 within
the next control interval, and the QP problem becomes infeasible and qp.status changes to -1 at
this time.

After three seconds, the disturbance is decreasing. At 3.8 seconds, the QP becomes feasible again.
The OV is still well above its setpoint, however, and the MV remains saturated until 5.4 seconds,
when the QP solution is to increase the MV as shown. From then on, the MV is not saturated, and the
controller is able to drive the OV back to its setpoint.

 Simulate MPC Controller with a Custom QP Solver

5-81

When the QP is feasible, the built-in solver finds the solution in three iterations or less.

Simulate with a Custom QP Solver

To examine how the custom solver behaves under the same conditions, activate the custom solver
option by setting the Optimizer.CustomSolver property of the MPC controller.

Obj.Optimizer.CustomSolver = true;

You must also provide a MATLAB® function that satisfies all the following requirements:

• Function name must be mpcCustomSolver.
• Function input and output arguments must match those defined in the mpcCustomSolver.txt

template file.
• Function must be on the MATLAB path.

For this example, use the custom solver defined in mpcCustomSolver.txt, which uses the
quadprog command from the Optimization Toolbox as the custom QP solver. To implement your own
custom QP solver, modify this file.

Save the function in your working folder as a .m file.

src = which('mpcCustomSolver.txt');
dest = fullfile(pwd,'mpcCustomSolver.m');
copyfile(src,dest,'f');

Review the saved mpcCustomSolver.m file.

function [x, status] = mpcCustomSolver(H, f, A, b, x0)
% mpcCustomSolver allows user to specify a custom quadratic programming
% (QP) solver to solve the QP problem formulated by MPC controller. When
% the "mpcobj.Optimizer.CustomSolver" property is set true, instead of
% using the built-in QP solver, MPC controller will now use the customer QP
% solver defined in this function for simulations in MATLAB and Simulink.
%
% The MPC QP problem is defined as follows:
% Find an optimal solution, x, that minimizes the quadratic objective
% function, J = 0.5*x'*H*x + f'*x, subject to linear inequality
% constraints, A*x >= b.
%
% Inputs (provided by MPC controller at run-time):
% H: a n-by-n Hessian matrix, which is symmetric and positive definite.
% f: a n-by-1 column vector.
% A: a m-by-n matrix of inequality constraint coefficients.
% b: a m-by-1 vector of the right-hand side of inequality constraints.
% x0: a n-by-1 vector of the initial guess of the optimal solution.
%
% Outputs (fed back to MPC controller at run-time):
% x: must be a n-by-1 vector of optimal solution.
% status: must be an finite integer of:
% positive value: number of iterations used in computation
% 0: maximum number of iterations reached
% -1: QP is infeasible
% -2: Failed to find a solution due to other reasons
% Note that even if solver failed to find an optimal solution, "x" must be
% returned as a n-by-1 vector (i.e. set it to the initial guess x0)

5 Controller Simulation

5-82

%
% DO NOT CHANGE LINES ABOVE

% The following code is an example of how to implement the custom QP solver
% in this function. It requires Optimization Toolbox to run.

% Define QUADPROG options and turn off display of optimization results in
% Command window.
options = optimoptions('quadprog');
options.Display = 'none';
% By definition, constraints required by "quadprog" solver is defined as
% A*x <= b. However, in our MPC QP problem, the constraints are defined as
% A*x >= b. Therefore, we need to implement some conversion here:
A_custom = -A;
b_custom = -b;
% Compute the QP's optimal solution. Note that the default algorithm used
% by "quadprog" ('interior-point-convex') ignores x0. "x0" is used here as
% an input argument for illustration only.
H = (H+H')/2; % ensure Hessian is symmetric
[x, ~, Flag, Output] = quadprog(H, f, A_custom, b_custom, [], [], [], [], x0, options);
% Converts the "flag" output to "status" required by the MPC controller.
switch Flag
 case 1
 status = Output.iterations;
 case 0
 status = 0;
 case -2
 status = -1;
 otherwise
 status = -2;
end
% Always return a non-empty x of the correct size. When the solver fails,
% one convenient solution is to set x to the initial guess.
if status <= 0
 x = x0;
end

Repeat the simulation.

set_param([mdl '/Controller Status'],'ymax','10');
sim(mdl)

-->Converting the "Model.Plant" property of "mpc" object to state-space.
-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Simulate MPC Controller with a Custom QP Solver

5-83

5 Controller Simulation

5-84

The plant input and output signals are identical to those obtained using the built-in Model Predictive
Control Toolbox solver, but the qp.status shows that quadprog does not take the same number of
iterations to find a solution. However, it does detect the same infeasibility time period.

bdclose(mdl);

See Also

More About
• “QP Solvers” on page 2-17
• “Simulate and Generate Code for MPC Controller with Custom QP Solver” on page 10-56

 Simulate MPC Controller with a Custom QP Solver

5-85

Use Suboptimal Solution in Fast MPC Applications
This example shows how to guarantee the worst-case execution time of an MPC controller in real-
time applications by using the suboptimal solution returned by the optimization solver.

What is a Suboptimal Solution?

Model predictive control (MPC) solves a quadratic programming (QP) problem at each control
interval. The built-in QP solver uses an iterative active-set algorithm that is efficient for MPC
applications. However, when constraints are present, there is no way to predict how many solver
iterations are required to find an optimal solution. Also, in real-time applications, the number of
iterations can change dramatically from one control interval to the next. In such cases, the worst-case
execution time can exceed the limit that is allowed on the hardware platform and determined by the
controller sample time.

You can guarantee the worst-case execution time for your MPC controller by applying a suboptimal
solution after the number of optimization iterations exceeds a specified maximum value. To set the
worst-case execution time, first determine the time needed for a single optimization iteration by
experimenting with your controller under nominal conditions. Then, set a small upper bound on the
number of iterations per control interval.

By default, when the maximum number of iterations is reached, an MPC controller does not use the
suboptimal solution. Instead, the controller sets an error flag (status = 0) and freezes its output.
Often, the solution available in earlier iterations is good enough, but requires refinement to find an
optimal solution, which leads to many additional iterations.

This example shows how to configure your MPC controller to use the suboptimal solution. The
suboptimal solution is a feasible solution available at the final iteration (modified, if necessary, to
satisfy any hard constraints on the manipulated variables). To determine whether the suboptimal
solution provides acceptable control performance for your application, run simulations across your
operating range.

Define Plant Model

The plant model is a stable randomly generated state-space system. It has 10 states, 3 manipulated
variables (MV), and 3 outputs (OV).

rng(1234);
nX = 10;
nOV = 3;
nMV = 3;
Plant = rss(nX,nOV,nMV);
Plant.d = 0;
Ts = 0.1;

Design MPC Controller with Constraints on MVs and OVs

Create an MPC controller with default values for all controller parameters except the constraints.
Specify constraints on both the manipulated and output variables.

verbosity = mpcverbosity('off'); % Temporarily disable command line messages.
mpcobj = mpc(Plant, Ts);
for i = 1:nMV
 mpcobj.MV(i).Min = -1.0;
 mpcobj.MV(i).Max = 1.0;

5 Controller Simulation

5-86

end
for i = 1:nOV
 mpcobj.OV(i).Min = -1.0;
 mpcobj.OV(i).Max = 1.0;
end

Simultaneous constraints on both manipulated and output variables require a relatively large number
of QP iterations to determine the optimal control sequence.

Simulate in MATLAB with Random Output Disturbances

First, simulate the MPC controller using the optimal solution in each control interval. To focus on only
output disturbance rejection performance, set the output reference values to zero.

T = 5;
N = T/Ts + 1;
r = zeros(1,nOV);
SimOptions = mpcsimopt();
SimOptions.OutputNoise = 3*randn(N,nOV);
[y,t,u,~,~,~,status] = sim(mpcobj,N,r,[],SimOptions);

Plot the number of iterations used in each control interval.

figure
stairs(status)
hold on
title('Number of Iterations')

 Use Suboptimal Solution in Fast MPC Applications

5-87

The largest number of iterations is 21, and the average is 5.8 iterations.

Create an MPC controller with the same settings, but configure it to use the suboptimal solution.

mpcobjSub = mpcobj;
mpcobjSub.Optimizer.UseSuboptimalSolution = true;

Reduce the maximum number of iterations for the default active-set QP solver to a small number.

mpcobjSub.Optimizer.ActiveSetOptions.MaxIterations = 3;

Simulate the second controller with the same output disturbance sequence.

[ySub,tSub,uSub,~,~,~,statusSub] = sim(mpcobjSub,N,r,[],SimOptions);

Plot the number of iterations used in each control interval on the same plot. For any control interval
in which the maximum number of iterations is reached, statusSub is zero. Before plotting the result,
set the number of iterations for these intervals to 3.

statusSub(statusSub == 0) = 3;
stairs(statusSub)
legend('optimal','suboptimal')

The largest number of iterations is now 3, and the average is 2.8 iterations.

Compare the performance of the two controllers. When the suboptimal solution is used, there is no
significant deterioration in control performance compared to the optimal solution.

5 Controller Simulation

5-88

figure
for ct=1:3
 subplot(3,1,ct)
 plot(t,y(:,ct),t,ySub(:,ct))
end
subplot(3,1,1)
title('Outputs')
legend('optimal','suboptimal')

For a real-time application, as long as each solver iteration takes less than 30 milliseconds on the
hardware, the worst-case execution time does not exceed the controller sample time (0.1 seconds).
In general, it is safe to assume that the execution time used by each iteration is more or less a
constant.

Simulate in Simulink with Random Output Disturbances

Simulate the controllers in Simulink®.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end

Model = 'mpc_SuboptimalSolution';
open_system(Model)
sim(Model)

 Use Suboptimal Solution in Fast MPC Applications

5-89

5 Controller Simulation

5-90

 Use Suboptimal Solution in Fast MPC Applications

5-91

As in the command-line simulation, the average number of QP iterations per control interval
decreased without significantly affecting control performance.

mpcverbosity(verbosity); % Enable command line messages.
bdclose(Model)

See Also
Functions
mpcmoveopt

Blocks
MPC Controller | Adaptive MPC Controller

More About
• “QP Solvers” on page 2-17

5 Controller Simulation

5-92

Design and Cosimulate Control of High-Fidelity Distillation
Tower with Aspen Plus Dynamics

This example shows how to design a model predictive controller in MATLAB for a high-fidelity
distillation tower model built in Aspen Plus Dynamics®. The controller performance is then verified
through cosimulation between Simulink and Aspen Plus Dynamics.

Distillation Tower

The distillation tower uses 29 ideal stages to separate a mixture of benzene, toluene, and xylenes
(represented by p-xylene). The distillation process is continuous. The equipment includes a reboiler
and a total condenser as shown below:

The distillation tower operates at a nominal steady-state condition:

• The feed stream contains 30% of benzene, 40% of toluene and 30% of xylenes.
• The feed flow rate is 500 kmol/hour.

 Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus Dynamics

5-93

• To satisfy the distillate purity requirement, the distillate contains 95% of benzene.
• To satisfy the requirement of recovering 95% of benzene in the feed, the benzene impurity in the

bottoms is 1.7%.

The control objectives are listed below, sorted by their importance:

1 Hold the tower pressure constant.
2 Maintain 5% of toluene in the distillate (it is equivalent to maintain 95% of benzene in the

distillate because the distillate only contains benzene and toluene).
3 Maintain 1.7% of the benzene in the bottoms.
4 Keep liquid levels in the sump and the reflux drum within specified limits.

Build High-Fidelity Plant Model in Aspen Plus Dynamics

Use an Aspen Plus RADFRAC block to define the tower's steady-state characteristics. In addition to the
usual information needed for a steady-state simulation, you must specify tray hydraulics, tower sump
geometry, and the reflux drum size. The trays are a sieve design spaced 18 inches apart. All trays
have a 1.95 m in diameter with a 5 cm weir height. Nominal liquid depths are 0.67 m and 1.4875 m in
the horizontal reflux drum and sump respectively.

The steady-state model is ported to Aspen Plus Dynamics (APD) for a flow-driven simulation. This
neglects actuator dynamics and assumes accurate regulation of manipulated flow rates. By default,
APD adds PI controllers to regulate the tower pressure and the two liquid levels. In this example, the
default PI controllers are intentionally removed.

The APD model of the high-fidelity distillation tower is shown below:

5 Controller Simulation

5-94

Linearize Plant Using Aspen Plus Control Design Interface

Model Predictive Controller requires an LTI model of the plant. In this example, the plant inputs are:

1 Condenser duty (W)
2 Reboiler duty (W)
3 Reflux mass flow rate (kg/h)
4 Distillate mass flow rate (kg/h stream #2)
5 Bottoms mass flow rate (kg/h stream #3)

 Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus Dynamics

5-95

6 Feed molar flow rate (kmol/h stream #1)

The plant outputs are:

1 Tower pressure (in the condenser: stage 1, bar)
2 Reflux drum liquid level (m)
3 Sump liquid level (m)
4 Mass fraction toluene in the distillate
5 Mass fraction benzene in the bottoms

Aspen Plus Dynamics provides a Control Design Interface (CDI) tool that linearizes a dynamic model
at a specified condition.

The following steps are taken to obtain the linear plant model in Aspen Plus Dynamics.

Step 1: Add a script to the APD model under the Flowsheet folder. In this example, the script name
is CDI_Calcs (as shown above) and it contains the following APD commands:

Set Doc = ActiveDocument
set CDI = Doc.CDI
CDI.Reset
CDI.AddInputVariable "blocks(""B1"").condenser(1).QR"
CDI.AddInputVariable "blocks(""B1"").QrebR"
CDI.AddInputVariable "blocks(""B1"").Reflux.FmR"
CDI.AddInputVariable "streams(""2"").FmR"
CDI.AddInputVariable "streams(""3"").FmR"
CDI.AddInputVariable "streams(""1"").FR"
CDI.AddOutputVariable "blocks(""B1"").Stage(1).P"
CDI.AddOutputVariable "blocks(""B1"").Stage(1).Level"
CDI.AddOutputVariable "blocks(""B1"").SumpLevel"
CDI.AddOutputVariable "streams(""2"").Zmn(""TOLUENE"")"
CDI.AddOutputVariable "streams(""3"").Zmn(""BENZENE"")"
CDI.Calculate

Step 2: Initialize the APD model to the nominal steady-state condition.

Step 3: Invoke the script, which generates the following text files:

• cdi_A.dat, cdi_B.dat, cdi_C.dat define the A, B, and C matrices of a standard continuous-
time LTI state-space model. D matrix is zero. The A, B, C matrices are sparse matrices.

• cdi_list.lis lists the model variables and their nominal values.
• cdi_G.dat defines the input/output static gain matrix at the nominal condition. The gain matrix

is also a sparse matrix.

In this example, cdi_list.lis includes the following information:

A matrix computed, number of non-zero elements = 1408
B matrix computed, number of non-zero elements = 26
C matrix computed, number of non-zero elements = 20
G matrix computed, number of non-zero elements = 30
Number of state variables: 120
Number of input variables: 6
Number of output variables: 5
Input variables:
 1 -3690034.247458334 BLOCKS("B1").Condenser(1).QR

5 Controller Simulation

5-96

 2 3819023.193875 BLOCKS("B1").QRebR
 3 22135.96620144 BLOCKS("B1").Reflux.FmR
 4 11717.39655353 STREAMS("2").FmR
 5 34352.86345834 STREAMS("3").FmR
 6 500 STREAMS("1").FR
Output variables:
 1 1.100022977953499 BLOCKS("B1").Stage(1).P
 2 0.6700005140605662 BLOCKS("B1").Stage(1).Level
 3 1.4875 BLOCKS("B1").SumpLevel
 4 0.05002582161855798 STREAMS("2").Zmn("TOLUENE")
 5 0.01705308738356429 STREAMS("3").Zmn("BENZENE")

The nominal values of the state variables listed in the file are ignored because they are not needed in
the MPC design.

Create Scaled and Reduced LTI State-Space Model

Step 1: Convert the CDI-generated sparse-matrices to a state-space model.

Load state-space matrices from the CDI data files to MATLAB workspace and convert the sparse
matrices to full matrices.

load mpcdistillation_cdi_A.dat
load mpcdistillation_cdi_B.dat
load mpcdistillation_cdi_C.dat
A = full(spconvert(mpcdistillation_cdi_A));
B = full(spconvert(mpcdistillation_cdi_B));
C = full(spconvert(mpcdistillation_cdi_C));
D = zeros(5,6);

It is possible that an entire sparse matrix row or column is zero, in which case the above commands
are insufficient. Use the following additional checks to make sure A, B, and C have the correct
dimensions:

[nxAr,nxAc] = size(A);
[nxB,nu] = size(B);
[ny,nxC] = size(C);
nx = max([nxAr, nxAc, nxB, nxC]);
if nx > nxC
 C = [C, zeros(ny,nx-nxC)];
end
if nx > nxAc
 A = [A zeros(nxAr,nx-nxAc)];
end
if nx > nxAr
 nxAc = size(A,2);
 A = [A; zeros(nx-nxAr, nxAc)];
end
if nxB < nx
 B = [B; zeros(nx-nxB,nu)];
end

Step 2: Scale the plant signals.

It is good practice, if not essential, to convert plant signals from engineering units to a uniform
dimensionless scale (e.g., 0-1 or 0-100%). One alternative is to define scale factors as part of a Model
Predictive Controller design. This can simplify controller tuning significantly. For example, see,
“Using Scale Factors to Facilitate MPC Weights Tuning” on page 1-32.

 Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus Dynamics

5-97

In the present example, however, we will use a model reduction procedure prior to controller design,
and we therefore scale the plant model, using the scaled model in both model reduction and
controller design. We define a span for each input and output, i.e., the difference between expected
maximum and minimum values in engineering units. Also record the nominal and zero values in
engineering units to facilitate subsequent conversions.

U_span = [2*(-3690034), 2*3819023, 2*22136, 2*11717, 2*34353, 2*500];
U_nom = 0.5*U_span;
U_zero = zeros(1,6);
Y_nom = [1.1, 0.67, 1.4875, 0.050026, 0.017053];
Y_span = [0.4, 2*Y_nom(2:5)];
Y_zero = [0.9, 0, 0, 0, 0];

Scale the B and C matrices such that all input/output variables are expressed as percentages.

B = B.*(ones(nx,1)*U_span);
C = C./(ones(nx,1)*Y_span)';

Step 3: Define the state-space plant model.

G = ss(A,B,C,D);
G.TimeUnit = 'hours';
G.u = {'Qc','Qr','R','D','B','F'};
G.y = {'P','RLev','Slev','xD','xB'};

Step 4: Reduce model order.

Model reduction speeds up the calculations with negligible effect on prediction accuracy. Use the
hsvd command to determine which states can be safely discarded. Use the balred function to
remove these states and reduce model order.

[hsv, baldata] = hsvd(G);
order = find(hsv>0.01,1,'last');
Options = balredOptions('StateElimMethod','Truncate');
G = balred(G,order,baldata,Options);

The original model has 120 states and the reduced model has only 16 states. Note that the Truncate
option is used in the balred function to preserve a zero D matrix. The model has two poles at zero,
which correspond to the two liquid levels.

Test Accuracy of the Linear Plant Model

Before continuing with the MPC design, it is good practice to verify that the scaled LTI model is
accurate for small changes in the plant inputs. To do so, you need to compare the response of the
nonlinear plant in APD and the response of linear model G.

Step 1: To obtain the response of the nonlinear plant, create a Simulink model and add the Aspen
Modeler Block to it.

The block is provided by Aspen Plus Dynamics in their AMSimulink library.

Step 2: Double-click the block and provide the location of the APD model.

The APD model information is then imported into Simulink. For large APD models, the importing
process may take some time.

Step 3: Specify input and output signals in the AMSimulation block.

5 Controller Simulation

5-98

Use the same variable names and sequence as in the CDI script.

 Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus Dynamics

5-99

The block now shows inports and outports for each signal that you defined.

Step 4: Expand the Simulink model with an input signal coming from the variable Umat and an
output signal saved to variable Ypct_NL. Both variables are created in Step 5.

Since Umat is in the percentage units, the Pct2Engr block is implemented to convert from
percentage units to engineering units.

Since Ypct_NL is in the percentage units, the Engr2Pct block is implemented to convert from
engineering units to percentage units.

With everything connected and configured, the model appears as follows:

5 Controller Simulation

5-100

Step 5: Verify linear model with cosimulation.

In this example, 1 percent increase in the scaled reflux rate (input #3) is used as the excitation signal
to the plant.

U_nom_pct = (U_nom - U_zero)*100./U_span; % Convert nominal condition from engineering units to percentages
Y_nom_pct = (Y_nom - Y_zero)*100./Y_span;
Tend = 1; % Simulation duration (1 hour)
t = (0:1/60:Tend)'; % Sample period is 1 minute
nT = length(t);
Upct = ones(nT,1)*U_nom_pct;
DUpct = zeros(nT,6);
DUpct(:,3) = ones(nT,1); % Input signal where step occurs in channel #3

The response of the linear plant model is computed using the lsim command and stored in variable
Ypct_L.

Ypct_L = lsim(G,DUpct,t);
Ypct_L = Ypct_L + ones(nT,1)*Y_nom_pct;

The response of the nonlinear plant is obtained through cosimulation between Simulink and Aspen
Plus Dynamics. The excitation signal Umat is constructed as below. The result is stored in variable
Ypct_NL.

Umat = [t, Upct+DUpct];

Compare the linear and nonlinear model responses.

 Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus Dynamics

5-101

The LTI model predictions track the nonlinear responses well. The amount of prediction error is
acceptable. In any case, a Model Predictive Controller must be tuned to accommodate prediction
errors, which are inevitable in applications.

You can repeat the above steps to verify similar agreement for the other five inputs.

Design Model Predictive Controller

Given an LTI prediction model, you are ready to design a Model Predictive Controller. In this example,
the manipulated variables are the first five plant inputs. The sixth plant input (feed flow rate) is a
measured disturbance for feed-forward compensation. All the plant outputs are measured.

Step 1: Augment the plant to model unmeasured load disturbances.

Lacking any more specific details regarding load disturbances, it is common practice to assume an
unmeasured load disturbance occurring at each of the five inputs. This allows the MPC state
estimator to eliminate offset in each controlled output when a load disturbance occurs.

In this example, 5 unmeasured load disturbances are added to the plant model G. In total, there are
now 11 inputs to the prediction model Gmpc: 5 manipulated variables, 1 measured disturbance, and 5
unmeasured disturbances.

Gmpc = ss(G.A,G.B(:,[1:6,1:5]),G.C,zeros(5,11),'TimeUnit','hours');
InputName = cell(1,11);
for i = 1:5
 InputName{i} = G.InputName{i};
 InputName{i+6} = [G.InputName{i}, '-UD'];

5 Controller Simulation

5-102

end
InputName{6} = G.InputName{6};
Gmpc.InputName = InputName;
Gmpc.InputGroup = struct('MV',1:5,'MD',6,'UD',7:11);
Gmpc.OutputName = G.OutputName;

Step 2: Create an initial model predictive controller and specify sample time and horizons.

In this example, the controller sample period is 30 seconds. The prediction horizon is 60 intervals (30
minutes), which is large enough to make the controller performance insensitive to further increases
of the prediction horizon. The control horizon is 4 intervals (2 minutes), which is relatively small to
reduce computational effort.

Ts = 30/3600; % sample time
PH = 60; % prediction horizon
CH = 4; % control horizon
MPCobj = mpc(Gmpc,Ts,PH,CH); % MPC object

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Step 3: Specify weights for manipulated variables and controlled outputs.

Weights are key tuning adjustments in MPC design and they should be chosen based on your control
objectives.

There is no reason to hold a particular MV at a setpoint, so set the
Weights.ManipulatedVariables property to zero:

MPCobj.Weights.ManipulatedVariables = [0, 0, 0, 0, 0];

The distillate product (MV #4) goes to storage. The only MV affecting downstream unit operations is
the bottoms rate (MV #5). To discourage rapid changes in bottoms rate, retain the default weight of
0.1 for its rate of change. Reduce the other rate of change weights by a factor of 10:

MPCobj.Weights.ManipulatedVariablesRate = [0.01, 0.01, 0.01, 0.01, 0.1];

The control objectives provide guidelines to choose weights on controlled outputs:

1 The tower pressure must be regulated tightly for safety reasons and for minimizing upsets in tray
temperatures and hydraulics. (objective #1)

2 The distillate composition must also be regulated tightly. (objective #2)
3 The bottoms composition can be regulated less tightly. (objective #3)
4 The liquid levels are even less important. (objective #4)

With these priorities in mind, weights on controlled outputs are chosen as follows::

MPCobj.Weights.OutputVariables = [10, 0.1, 0.1, 1, 0.5];

Scaling the model simplifies the choice of the optimization weights. Otherwise, in addition to the
relative priority of each variable, you would also have to consider the relative magnitudes of the
variables and choose weights accordingly.

Step 4: Specify nominal plant input/output values.

 Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus Dynamics

5-103

In this example, the nominal values are scaled as percentages. MPC controller demands that the
nominal values for unmeasured disturbances must be zero.

MPCobj.Model.Nominal.U = [U_nom_pct'; zeros(5,1)];
MPCobj.Model.Nominal.Y = Y_nom_pct';

Step 5: Adjust state estimator gain.

Adjusting the state estimator gain affects the disturbance rejection performance. Increasing the state
estimator gain (e.g. by increasing the gain of the input/output disturbance model) makes the
controller respond more aggressively towards output changes (because the controller assumes the
main source of the output changes is a disturbance, instead of measurement noise). On the other
hand, decreasing the state estimator gain makes the closed-loop system more robust.

First, check whether using the default state estimator provides a decent disturbance rejection
performance.

Simulate the closed-loop response to a 1% unit step in reflux (MV #3) in MATLAB. The simulation
uses G as the plant, which implies no model mismatch.

T = 30; % Simulation time
r = Y_nom_pct; % Nominal setpoints
v = U_nom_pct(6); % No measured disturbance
SimOptions = mpcsimopt(MPCobj);
SimOptions.InputNoise = [0 0 1 0 0]; % 1% unit step in reflux
[y_L,t_L,u_L] = sim(MPCobj, T, r, v, SimOptions); % Closed-loop simulation

-->Converting model to discrete time.
-->The "Model.Disturbance" property of "mpc" object is empty:
 Assuming unmeasured input disturbance #7 is integrated white noise.
 Assuming unmeasured input disturbance #8 is integrated white noise.
 Assuming unmeasured input disturbance #9 is integrated white noise.
 Assuming unmeasured input disturbance #10 is integrated white noise.
 Assuming unmeasured input disturbance #11 is integrated white noise.
 Assuming no disturbance added to measured output channel #1.
 Assuming no disturbance added to measured output channel #4.
 Assuming no disturbance added to measured output channel #5.
 Assuming no disturbance added to measured output channel #2.
 Assuming no disturbance added to measured output channel #3.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

% plot responses
f1 = figure();
subplot(2,1,1);
plot(t_L,y_L,[0 t_L(end)],[50 50],'k--')
title('Controlled Outputs, %')
legend(Gmpc.OutputName,'Location','NorthEastOutside')
subplot(2,1,2);
plot(t_L,u_L(:,1:5),[0 t_L(end)],[50 50],'k--')
title('Manipulated Variables, %')
legend(Gmpc.InputName(1:5),'Location','NorthEastOutside')
xlabel('Time, h')

5 Controller Simulation

5-104

The default estimator provides sluggish load rejection. In particular, the critical xD output drops to
49% and has just begun to return to the setpoint after 0.25 hours.

Secondly, increase the estimator gain by multiplying the default input disturbance model gain by a
factor of 25.

EstGain = 25; % factor of 25
Gd = getindist(MPCobj); % get default input disturbance model
Gd_new = EstGain*Gd; % create new input disturbance model
setindist(MPCobj,'Model',Gd_new); % set input disturbance model
[y_L,t_L,u_L] = sim(MPCobj,T,r,v,SimOptions); % Closed-loop simulation

-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
 Assuming no disturbance added to measured output channel #4.
 Assuming no disturbance added to measured output channel #5.
 Assuming no disturbance added to measured output channel #2.
 Assuming no disturbance added to measured output channel #3.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

% plot responses
f2 = figure();
subplot(2,1,1);
plot(t_L,y_L,[0 t_L(end)],[50 50],'k--')
title('Controlled Outputs, %')
legend(Gmpc.OutputName,'Location','NorthEastOutside')
subplot(2,1,2)
plot(t_L,u_L(:,1:5),[0 t_L(end)],[50 50],'k--')

 Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus Dynamics

5-105

title('Manipulated Variables, %')
legend(Gmpc.InputName(1:5),'Location','NorthEastOutside')
xlabel('Time, h')

Now, the peak deviation in xD is 50% less than the default case and xD returns to its setpoint much
faster. Other variables also respond more rapidly.

Thirdly, look at the reflux response (#3 in the "Manipulated Variables" plot). Because the disturbance
is a 1% unit step, the response begins at 51% and its final value is 50% at steady state. The reflux
response overshoots by 20% (reaching 49.8%) before settling. This amount of overshoot is
acceptable.

If the estimator gain were increased further (e.g. by a factor of 50), the controller overshoot would
increase too. However, such aggressive behavior is unlikely to be robust when applied to the
nonlinear plant model.

You can introduce other load disturbances to verify that disturbance rejection is now rapid in all
cases.

Scaling the model also simplifies disturbance model tuning. Otherwise, you would need to adjust the
gain of each channel in the disturbance model to achieve good disturbance rejection for all loads.

Generally, you next check the response to setpoint changes. If the response is too aggressive, you can
use setpoint filter to smooth it. Setpoint filter has no effect on load disturbance rejection and thus can
be tuned independently.

5 Controller Simulation

5-106

Cosimulate MPC Controller and Nonlinear Plant

Use cosimulation to determine whether the MPC design is robust enough to control the nonlinear
plant model.

Step 1: Add constraints to the MPC controller

Because the nonlinear plant model has input and output constraints during operation, MV and OV
constraints are defined in the MPC controller as follows:

MV = MPCobj.MV;
OV = MPCobj.OV;
% Physical bounds on MVs at 0 and 100
for i = 1:5
 MV(i).Min = 0;
 MV(i).Max = 100;
end
MPCobj.MV = MV;
% Keep liquid levels greater than 25% and less than 75% of capacity.
for i = 2:3
 OV(i).Min = 25;
 OV(i).Max = 75;
end
MPCobj.OV = OV;

Step 2: Build Simulink model for cosimulation.

 Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus Dynamics

5-107

The model can simulate 1% unit step in reflux (MV #3). It can also simulate a change in feed
composition, which is a common disturbance and differs from the load disturbances considered
explicitly in the design.

Step 3: Simulate 1% unit step in reflux (MV #3). Compare the closed-loop responses between using
the linear plant model and using the nonlinear plant model.

Plot distillate product composition (xD) and the reflux rate (R):

5 Controller Simulation

5-108

In cosimulation, the model predictive controller rejects the small load disturbance in a manner almost
identical to the linear simulation.

Step 4: Simulate a large decrease of benzene fraction (from 0.3 to 0.22) in the feed stream.
Compare the closed-loop responses between using the linear and nonlinear plant models.

 Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus Dynamics

5-109

The drop in benzene fraction requires a sustained decrease in the distillate rate and a corresponding
increase in the bottoms rate. There are also sustained drops in the heat duties and a minor increase
in the reflux. All MV adjustments are smooth and all controlled outputs are nearly back to their
setpoints within 0.5 hours.

See Also
mpc

5 Controller Simulation

5-110

Simulate Linear MPC Controller with Nonlinear Plant using
Successive Linearizations

You can use sim to simulate a closed-loop system consisting of a linear plant model and an MPC
controller.

If your plant is a nonlinear Simulink model, you can linearize the plant (see “Linearization Using
Model Linearizer in Simulink Control Design”) and design a controller for the linear model (see
“Design MPC Controller in Simulink”). To simulate the system, specify the controller in the MPC
block parameter MPC Controller field and run the closed-loop Simulink model.

Alternatively, your nonlinear model might be a MEX-file, or you might want to include features
unavailable in the MPC block, such as a custom state estimator. The mpcmove function is the Model
Predictive Control Toolbox computational engine, and you can use it in such cases. The disadvantage
is that you must duplicate the infrastructure that the sim function and the MPC block provide
automatically.

Nonlinear CSTR Application
The CSTR model described in “Linearize Simulink Models” is a strongly nonlinear system. As shown
in “Design MPC Controller in Simulink”, a controller can regulate this plant, but degrades (and might
even become unstable) if the operating point changes significantly.

The objective of this example is to redefine the predictive controller at the beginning of each control
interval so that its predictive model, though linear, represents the latest plant conditions as
accurately as possible. This will be done by linearizing the nonlinear model repeatedly, allowing the
controller to adapt as plant conditions change. For more details on this approach, see [1] and [2].

Example Code for Successive Linearization
In the following code, the simulation begins at the nominal operating point of the CSTR model
(concentration = 8.57) and moves to a lower point (concentration = 2) where the reaction rate is
much higher. The required code is as follows:

[sys, xp] = CSTR_INOUT([],[],[],'sizes');
up = [10 298.15 298.15];
u = up(3);
tsave = [];
usave = [];
ysave = [];
rsave = [];
Ts = 1;
t = 0;
while t < 40
 yp = xp;
 % Linearize the plant model at the current conditions
 [a,b,c,d] = linmod('CSTR_INOUT',xp,up);
 Plant = ss(a,b,c,d);
 Plant.InputGroup.ManipulatedVariables = 3;
 Plant.InputGroup.UnmeasuredDisturbances = [1 2];
 Model.Plant = Plant;

 % Set nominal conditions to the latest values

 Simulate Linear MPC Controller with Nonlinear Plant using Successive Linearizations

5-111

 Model.Nominal.U = [0 0 u];
 Model.Nominal.X = xp;
 Model.Nominal.Y = yp;

 dt = 0.001;

 simOptions.StartTime = num2str(t);
 simOptions.StopTime = num2str(t+dt);
 simOptions.LoadInitialState = 'on';
 simOptions.InitialState = 'xp';
 simOptions.SaveTime = 'on';
 simOptions.SaveState = 'on';
 simOptions.LoadExternalInput = 'on';
 simOptions.ExternalInput = '[t up; t+dt up]';

 simOut = sim('CSTR_INOUT',simOptions);

 T = simOut.get('tout');
 XP = simOut.get('xout');
 YP = simOut.get('yout');

 Model.Nominal.DX = (1/dt)*(XP(end,:)' - xp(:));

 % Define MPC controller for the latest model
 MPCobj = mpc(Model, Ts);
 MPCobj.W.Output = [0 1];

 % Ramp the setpoint
 r = max([8.57 - 0.25*t, 2]);

 % Compute the control action
 if t <= 0
 xd = [0; 0];
 x = mpcstate(MPCobj,xp,xd,[],u);
 end

 u = mpcmove(MPCobj,x,yp,[0 r],[]);

 % Simulate the plant for one control interval
 up(3) = u;

 simOptions.StartTime = num2str(t);
 simOptions.StopTime = num2str(t+Ts);
 simOptions.InitialState = 'xp';
 simOptions.ExternalInput = '[t up; t+Ts up]';

 simOut = sim('CSTR_INOUT',simOptions);

 T = simOut.get('tout');
 XP = simOut.get('xout');
 YP = simOut.get('yout');

 % Save results for plotting
 tsave = [tsave; T];
 ysave = [ysave; YP];
 usave = [usave; up(ones(length(T),1),:)];
 rsave = [rsave; r(ones(length(T),1),:)];

5 Controller Simulation

5-112

 xp = XP(end,:)';

 t = t + Ts;
end

figure(1)
plot(tsave,[ysave(:,2) rsave])
title('Residual Concentration')
figure(2)
plot(tsave,usave(:,3))
title('Coolant Temperature')

CSTR Results and Discussion
The plotted results appear below. Note the following points:

• The setpoint is being ramped from the initial concentration to the desired final value (see the step-
wise changes in the reactor concentration plot below). The reactor concentration tracks this ramp
smoothly with some delay (see the smooth curve), and settles at the final state with negligible
overshoot. The controller works equally well (and achieves the final concentration more rapidly)
for a step-wise setpoint change, but it makes unrealistically rapid changes in coolant temperature
(not shown).

• The final steady state requires a coolant temperature of 305.20 K (see the coolant temperature
plot below). An interesting feature of this nonlinear plant is that if one starts at the initial steady
state (coolant temperature = 298.15 K), stepping the coolant temperature to 305.20 and holding
will not achieve the desired final concentration of 2. In fact, under this simple strategy the reactor
concentration stabilizes at a final value of 7.88, far from the desired value. A successful controller
must increase the reactor temperature until the reaction "takes off," after which it must reduce
the coolant temperature to handle the increased heat load. The relinearization approach provides
such a controller (see following plots).

 Simulate Linear MPC Controller with Nonlinear Plant using Successive Linearizations

5-113

5 Controller Simulation

5-114

• Function linearize relinearizes the plant as its state evolves. This function was discussed
previously in “Linearization Using MATLAB Code”.

• The code also resets the linear model's nominal conditions to the latest values. Note, however, that
the first two input signals, which are unmeasured disturbances in the controller design, always
have nominal zero values. As they are unmeasured, the controller cannot be informed of the true
values. A non-zero value would cause an error.

• Function mpc defines a new controller based on the relinearized plant model. The output weight
tuning ignores the temperature measurement, focusing only on the concentration.

• At t = 0, the mpcstate function initializes the extended state vector of the controller, x.
Thereafter, the mpcmove function updates it automatically using the controller's default state
estimator. It would also be possible to use an Extended Kalman Filter (EKF) as described in [1]
and [2], in which case the EKF would reset the mpcstate input variables at each step.

• The mpcmove function uses the latest controller definition and state, the measured plant outputs,
and the setpoints to calculate the new coolant temperature at each step.

• The Simulink sim function simulates the nonlinear plant from the beginning to the end of the
control interval. The final condition from the previous step is being used as the initial plant state,
and that the plant inputs are being held constant during each interval.

Remember that a conventional feedback controller or a fixed Model Predictive Control Toolbox
controller tuned to operate at the initial condition would become unstable as the plant moves to the
final condition. Periodic model updating overcomes this problem automatically and provides excellent
control under all conditions.

References
[1] Lee, J. H. and N. L. Ricker, "Extended Kalman Filter Based Nonlinear Model Predictive Control,"

Ind. Eng. Chem. Res., Vol. 33, No. 6, pp. 1530–1541 (1994).

[2] Ricker, N. L., and J. H. Lee "Nonlinear Model Predictive Control of the Tennessee Eastman
Challenge Process," Computers & Chemical Engineering, Vol. 19, No. 9, pp. 961–981 (1995).

 Simulate Linear MPC Controller with Nonlinear Plant using Successive Linearizations

5-115

Explicit MPC Design

• “Explicit MPC” on page 6-2
• “Design Workflow for Explicit MPC” on page 6-4
• “Explicit MPC Control of a Single-Input-Single-Output Plant” on page 6-7
• “Explicit MPC Control of an Aircraft with Unstable Poles” on page 6-17
• “Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output” on page 6-24
• “Explicit MPC Control of an Inverted Pendulum on a Cart” on page 6-33

6

Explicit MPC
A traditional model predictive controller solves a quadratic program (QP) at each control interval to
determine the optimal manipulated variable (MV) adjustments. These adjustments are the solution of
the implicit nonlinear function u=f(x).

The vector x contains the current controller state and other independent variables affecting the QP
solution, such as the current output reference values. The Model Predictive Control Toolbox software
imposes restrictions that force a unique QP solution.

Finding the optimal MV adjustments can be time consuming, and the required time can vary
significantly from one control interval to the next. In applications that require a solution within a
certain consistent time, which could be on the order of microseconds, the implicit MPC approach can
be unsuitable.

As shown in “Optimization Problem” on page 2-7, if no QP inequality constraints are active for a given
x vector, then the optimal MV adjustments become a time invariant affine function of x:

u = Fx + G .

where, F and G are constants. Similarly, if x remains in a region where a fixed subset of inequality
constraints is active, the QP solution is also an affine function of x, but with different F and G
constants.

Explicit MPC uses offline computations to determine all polyhedral regions where the optimal MV
adjustments are affine functions of x, and the corresponding control-law constants. When the
controller operates in real time, the explicit MPC controller performs the following steps at each
control instant, k:

1 Estimate the controller state using available measurements, as in traditional MPC.
2 Form x(k) using the estimated state and the current values of the other independent variables.
3 Identify the region in which x(k) resides.
4 Looks up the predetermined F and G constants for this region.
5 Evaluate the linear function u(k) = Fx(k) + G.

You can establish a tight upper bound for the time required in each step. If the number of regions is
not too large, the total computational time can be small. However, as the number of regions
increases, the time required in step 3 dominates, and the memory required to store all the linear
control laws and polyhedral regions becomes excessive. The number of regions characterizing u =
f(x) depends primarily on the number of QP inequality constraints that could be active at the solution.
If an explicit MPC controller has many constraints, and thus requires significant computational effort
or memory, a traditional implicit implementation may be preferable.

See Also

More About
• “Design Workflow for Explicit MPC” on page 6-4
• “Explicit MPC Control of a Single-Input-Single-Output Plant” on page 6-7
• “Explicit MPC Control of an Aircraft with Unstable Poles” on page 6-17

6 Explicit MPC Design

6-2

• “Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output” on page 6-24

 Explicit MPC

6-3

Design Workflow for Explicit MPC
To create an explicit MPC controller, you must first design a traditional (implicit) MPC controller. You
then generate an explicit MPC controller based on the traditional controller design.

Traditional (Implicit) MPC Design
First design a traditional (implicit) MPC for your application and test it in simulations. Key
considerations are as follows:

• The Model Predictive Control Toolbox software currently supports the following as independent
variables for explicit MPC:

• nxc controller state variables (plant, disturbance, and measurement noise model states).
• ny (≥ 1) output reference values, where ny is the number of plant output variables.
• nv (≥ 0) measured plant disturbance signals.

Thus, you must fix most MPC design parameters before creating an explicit MPC controller. Fixed
parameters include prediction models (plant, disturbance and measurement noise), scale factors,
horizons, penalty weights, manipulated variable targets, and constraint bounds.

For information about designing a traditional MPC controller, see “Controller Creation”.

For information about tuning traditional MPC controllers, see “Refinement”.
• Reference and measured disturbance previewing are not supported. At each control interval, the

current ny reference and nv measured disturbance signals apply for the entire prediction horizon.
• To limit the number of regions needed by explicit MPC, include only essential constraints.

• When including a constraint on a manipulated variable (MV), use a short control horizon or MV
blocking. See “Choose Sample Time and Horizons” on page 1-2.

• Avoid constraints on plant outputs. If such a constraint is essential, consider imposing it for
selected prediction horizon steps rather than the entire prediction horizon.

• Establish upper and lower bounds for each of the nx = nxc + ny + nv independent variables. You
might know some of these bounds a priori. However, you must run simulations that record at least
the nxc controller states as the system operates over the range of expected conditions. It is
important that you do not underestimate this range, because the explicit MPC control function is
not defined for independent variables outside the range.

For information about specifying bounds, see generateExplicitRange.

For information about simulating a traditional MPC controller, see “Simulation”.

Explicit MPC Generation
Given the constant MPC design parameters and the nx upper and lower bounds on the independent
variables of the control law, that is,

xl ≤ x(k) ≤ xu,

the generateExplicitMPC command determines nr regions. Each of these regions is defined by an
inequality constraint and the corresponding control law constants:

6 Explicit MPC Design

6-4

Hix k ≤ Ki, i = 1 to nr
u k = Fix k + Gi, i = 1 to nr

The explicitMPC object contains the constants Hi, Ki, Fi, and Gi for each region. The Explicit MPC
Controller object also holds the original (implicit) design and independent variable bounds. As long as
x(k) stays within the specified bounds and you retain all nr regions, the explicit MPC object provides
the same optimal MV adjustments, u(k), as the equivalent implicit MPC object.

For details about explicit MPC, see [1]. For details about how the explicit MPC controller is
generated, see [2].

Explicit MPC Simplification
Even a relatively simple explicit MPC controller might require many regions (nr >> 100) to
characterize the QP solution completely. If the number of regions is large, consider the following:

• Visualize the solution using the plotSection command.
• Use the simplify command to reduce the number of regions. Sometimes, this reduction can be

done with no (or negligible) impact on control law optimality. For example, pairs of adjacent
regions might employ essentially the same Fi and Ki constants. If so, and if the union of the two
regions forms a convex set, they can be merged into a single region.

Alternatively, you can eliminate relatively small regions or retain selected regions only. During
operation, if the current x(k) is not contained in any of the retained regions, the explicit MPC
returns a suboptimal u(k), as follows:

u k = F jx k + G j .

Here, j is the index of the region whose bounding constraint, Hjx(k) ≤ Kj, is least violated.

Implementation
During operation, for a given x(k), the explicit MPC controller performs the following steps:

1 Verifies that x(k) satisfies the specified bounds, xl ≤ x(k) ≤ xu. If not, the controller returns an
error status and sets u(k) = u(k–1).

2 Beginning with region i = 1, tests the regions one by one to determine whether x(k) belongs. If
Hix(k) ≤ Ki, then x(k) belongs to region i. If x(k) belongs to region i, then the controller:

• Obtains Fi and Gi from memory, and computes u(k) = Fix(k) + Gi.
• Signals successful completion, by returning a status code and the index i.
• Returns without testing the remaining regions.

If x(k) does not belong to region i, the controller:

• Computes the violation term vi, which is the largest (positive) component of the vector (Hix(k)
– Ki).

• If vi is the minimum violation for this x(k), the controller sets j = i, and sets vmin = vi.
• The controller then increments i and tests the next region.

3 If all regions have been tested and x(k) does not belong to any region (for example, due to a
numerical precision issue), the controller:

 Design Workflow for Explicit MPC

6-5

• Obtains Fj and Gj from memory, and computes u(k) = Fjx(k) + Gj.
• Sets status to indicate a suboptimal solution and returns.

Thus, the maximum computational time per control interval is the time required to test each region,
computing the violation term in each case and then calculating the suboptimal control adjustment.

Simulation
You can perform command-line simulations using the sim or mpcmoveExplicit commands.

You can use the Explicit MPC Controller block to connect an explicit MPC to a plant modeled in
Simulink.

References
[1] A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos, "The explicit linear quadratic regulator

for constrained systems," Automatica, vol. 38, no. 1, pp. 3–20, 2002.

[2] A. Bemporad, "A multi-parametric quadratic programming algorithm with polyhedral
computations based on nonnegative least squares," 2014, Submitted for publication.

See Also
generateExplicitMPC | mpcmoveExplicit | Explicit MPC Controller

More About
• “Explicit MPC” on page 6-2
• “Explicit MPC Control of a Single-Input-Single-Output Plant” on page 6-7
• “Explicit MPC Control of an Aircraft with Unstable Poles” on page 6-17
• “Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output” on page 6-24

6 Explicit MPC Design

6-6

Explicit MPC Control of a Single-Input-Single-Output Plant
This example shows how to control a double integrator plant under input saturation in Simulink®
using explicit MPC.

For an example that controls a double integrator with an implicit MPC controller, see “Model
Predictive Control of a Single-Input-Single-Output Plant”.

Define Plant Model

The linear open-loop dynamic model is a double integrator.

plant = tf(1,[1 0 0]);

Design MPC Controller

Create the controller object with a sample period of 0.1 seconds, and prediction and control horizons
of 10 and 3 steps respectively.

Ts = 0.1;
mpcobj = mpc(plant, Ts, 10, 3);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Specify actuator saturation limits as manipulated variable constraints.

mpcobj.MV = struct('Min',-1,'Max',1);

Generate Explicit MPC Controller

Explicit MPC executes the equivalent explicit piecewise affine version of the MPC control law defined
by traditional implicit MPC. To generate an explicit MPC object from a traditional MPC one, you must
specify the range for each controller state, reference signal, manipulated variable and measured
disturbance. This allows for the multi-parametric quadratic programming problem associated to the
MPC problem to be set up and solved, once for all, in the parameter space defined by these ranges.

Use the generateExplicitRange function to obtain a range structure where you can specify
parameter ranges.

range = generateExplicitRange(mpcobj);

-->Converting the "Model.Plant" property of "mpc" object to state-space.
-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

MPC controller states include states from plant model, disturbance model and noise model, in that
order. Setting the range of a state variable is sometimes difficult when the state does not correspond
to a physical parameter. In that case, multiple runs of open-loop plant simulation with typical
reference and disturbance signals are recommended in order to collect data that reflect the ranges of
states.

range.State.Min(:) = [-10;-10];
range.State.Max(:) = [10;10];

 Explicit MPC Control of a Single-Input-Single-Output Plant

6-7

Usually you know the practical range of the reference signals being used at the nominal operating
point in the plant. The ranges used to generate an explicit MPC controller must be at least as large as
the practical range.

range.Reference.Min = -2;
range.Reference.Max = 2;

Specify the manipulated variable ranges. If the manipulated variables are constrained, the ranges
used to generate the explicit MPC controller must be at least as large as these limits.

range.ManipulatedVariable.Min = -1.1;
range.ManipulatedVariable.Max = 1.1;

Use generateExplicitMPC command to obtain an explicit MPC controller with the specified
parameter ranges.

mpcobjExplicit = generateExplicitMPC(mpcobj, range)

Regions found / unexplored: 19/ 0

Explicit MPC Controller

Controller sample time: 0.1 (seconds)
Polyhedral regions: 19
Number of parameters: 4
Is solution simplified: No
State Estimation: Default Kalman gain

Type 'mpcobjExplicit.MPC' for the original implicit MPC design.
Type 'mpcobjExplicit.Range' for the valid range of parameters.
Type 'mpcobjExplicit.OptimizationOptions' for the options used in multi-parametric QP computation.
Type 'mpcobjExplicit.PiecewiseAffineSolution' for regions and gain in each solution.

Use the simplify function with the 'exact' method to join pairs of regions whose corresponding
gains are the same and whose union is a convex set. Doing so can reduce memory footprint of the
explicit MPC controller without sacrificing any performance.

mpcobjExplicitSimplified = simplify(mpcobjExplicit, 'exact')

Regions to analyze: 15/ 15

Explicit MPC Controller

Controller sample time: 0.1 (seconds)
Polyhedral regions: 15
Number of parameters: 4
Is solution simplified: Yes
State Estimation: Default Kalman gain

Type 'mpcobjExplicitSimplified.MPC' for the original implicit MPC design.
Type 'mpcobjExplicitSimplified.Range' for the valid range of parameters.
Type 'mpcobjExplicitSimplified.OptimizationOptions' for the options used in multi-parametric QP computation.
Type 'mpcobjExplicitSimplified.PiecewiseAffineSolution' for regions and gain in each solution.

6 Explicit MPC Design

6-8

The number of piecewise affine regions has been reduced.

Plot Piecewise Affine Partition

You can review any 2-D section of the piecewise affine partition defined by the explicit MPC control
law.

Use generatePlotParameters command to obtain a parameter structure where you can specify
which 2-D section to plot afterwards.

params = generatePlotParameters(mpcobjExplicitSimplified)

params =

 struct with fields:

 State: [1x1 struct]
 Reference: [1x1 struct]
 MeasuredDisturbance: [1x1 struct]
 ManipulatedVariable: [1x1 struct]

All but two of the control laws free parameters must be fixed, the remaining two variables form the
plot axes. In this example, you plot the first state variable against the second state variable, so you
need to fix all the other parameters at a value within their respective ranges.

Leave the states free to vary.

params.State.Index = [];
params.State.Value = [];

Fix the reference signal.

params.Reference.Index = 1;
params.Reference.Value = 0;

Fix the manipulated variable.

params.ManipulatedVariable.Index = 1;
params.ManipulatedVariable.Value = 0;

Use plotSection command to plot the 2-D section defined by the two free parameters. For more
information, see plotSection.

plotSection(mpcobjExplicitSimplified, params);
axis([-4 4 -4 4]);
grid
xlabel('State #1');
ylabel('State #2');

 Explicit MPC Control of a Single-Input-Single-Output Plant

6-9

Simulate Using mpcmove Function

Compare closed-loop simulations for traditional implicit MPC and explicit MPC using the mpcmove
and mpcmoveExplicit functions respectively.

Initialize variables to store the closed-loop MPC responses.

Tf = round(5/Ts);
YY = zeros(Tf,1);
YYExplicit = zeros(Tf,1);
UU = zeros(Tf,1);
UUExplicit = zeros(Tf,1);

Prepare the plant model used in simulation

sys = c2d(ss(plant),Ts);
xsys = [0;0];
xsysExplicit = xsys;

To obtain a pointer to the internal states for both controllers, use mpcstate.

xmpc = mpcstate(mpcobj);
xmpcExplicit = mpcstate(mpcobjExplicitSimplified);

Iteratively simulate the closed-loop response for both controllers.

for t = 0:Tf

6 Explicit MPC Design

6-10

 % update plant measurement
 ysys = sys.C*xsys;
 ysysExplicit = sys.C*xsysExplicit;

 % compute traditional MPC action
 u = mpcmove(mpcobj,xmpc,ysys,1);
 % compute explicit MPC action
 uExplicit = mpcmoveExplicit(mpcobjExplicit,xmpcExplicit,ysysExplicit,1);

 % store signals
 YY(t+1)=ysys;
 YYExplicit(t+1)=ysysExplicit;
 UU(t+1)=u;
 UUExplicit(t+1)=uExplicit;

 % update plant state
 xsys = sys.A*xsys + sys.B*u;
 xsysExplicit = sys.A*xsysExplicit + sys.B*uExplicit;
end

% Norm of the differences between traditional and explicit controller signals.
fprintf('\nDifference between traditional and Explicit MPC responses using MPCMOVE command is %g\n',...
 norm(UU-UUExplicit)+norm(YY-YYExplicit));

Difference between traditional and Explicit MPC responses using MPCMOVE command is 1.79044e-13

Simulate Using sim Function

Compare closed-loop simulations between traditional and explicit MPC using the sim command.

Tf = 5/Ts; % number of simulation iterations
[y1,t1,u1] = sim(mpcobj,Tf,1); % simulate with traditional MPC
[y2,t2,u2] = sim(mpcobjExplicitSimplified,Tf,1); % simulate with explicit MPC

-->Converting the "Model.Plant" property of "mpc" object to state-space.
-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

The simulation results are identical.

fprintf('\nDifference between traditional and Explicit MPC responses using SIM command is %g\n',...
 norm(u2-u1)+norm(y2-y1));

Difference between traditional and Explicit MPC responses using SIM command is 1.79056e-13

Simulate Using Simulink

Simulate the traditional MPC controller in Simulink. The MPC Controller block is configured to use
mpcobj as its controller.

mdl = 'mpc_doubleint';
open_system(mdl)
sim(mdl)

 Explicit MPC Control of a Single-Input-Single-Output Plant

6-11

6 Explicit MPC Design

6-12

Simulate the explicit MPC controller in Simulink. The Explicit MPC Controller block is configured to
use mpcobjExplicitSimplified as its controller.

mdlExplicit = 'empc_doubleint';
open_system(mdlExplicit)
sim(mdlExplicit)

 Explicit MPC Control of a Single-Input-Single-Output Plant

6-13

6 Explicit MPC Design

6-14

The closed-loop responses are identical.

fprintf('\nDifference between traditional and Explicit MPC responses in Simulink is %g\n',...
 norm(uExplicit-u)+norm(yExplicit-y));

Difference between traditional and Explicit MPC responses in Simulink is 1.64411e-13

Close both simulink models.

 Explicit MPC Control of a Single-Input-Single-Output Plant

6-15

bdclose(mdl)
bdclose(mdlExplicit)

See Also

More About
• “Explicit MPC” on page 6-2
• “Explicit MPC Control of an Aircraft with Unstable Poles” on page 6-17
• “Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output” on page 6-24

6 Explicit MPC Design

6-16

Explicit MPC Control of an Aircraft with Unstable Poles
This example shows how to control an unstable aircraft with saturating actuators using explicit model
predictive control.

For an example that controls the same plant using a traditional MPC controller, see “MPC Control of
an Aircraft with Unstable Poles” on page 1-148.

Define Aircraft Model

The linear open-loop dynamic model of the aircraft has the following state-space matrices:

A = [-0.0151 -60.5651 0 -32.174;
 -0.0001 -1.3411 0.9929 0;
 0.00018 43.2541 -0.86939 0;
 0 0 1 0];
B = [-2.516 -13.136;
 -0.1689 -0.2514;
 -17.251 -1.5766;
 0 0];
C = [0 1 0 0;
 0 0 0 1];
D = [0 0;
 0 0];

Create the plant, and specify the initial states as zero.

plant = ss(A,B,C,D);
x0 = zeros(4,1);

The manipulated variables are the elevator and flaperon angles. The attack and pitch angles are
measured outputs to be regulated.

The open-loop response of the system is unstable.

pole(plant)

ans =

 -7.6636 + 0.0000i
 5.4530 + 0.0000i
 -0.0075 + 0.0556i
 -0.0075 - 0.0556i

Design MPC Controller

To obtain an Explicit MPC controller, you must first design a traditional (implicit) model predictive
controller that is able to achieve your control objectives.

MV Constraints

Both manipulated variables are constrained between +/- 25 degrees. Since the plant inputs and
outputs are of different orders of magnitude, you also use scale factors to facilitate MPC tuning.
Typical choices of scale factor are the upper/lower limit or the operating range.

MV = struct('Min',{-25,-25},'Max',{25,25},'ScaleFactor',{50,50});

 Explicit MPC Control of an Aircraft with Unstable Poles

6-17

OV Constraints

Both plant outputs have constraints to limit undershoot at the first prediction horizon step. Also,
specify scale factors for outputs.

OV = struct('Min',{[-0.5;-Inf],[-100;-Inf]},'Max',{[0.5;Inf],[100;Inf]},'ScaleFactor',{1,200});

Weights

The control task is to get zero offset for piecewise-constant references, while avoiding instability due
to input saturation. Because both MV and OV variables are already scaled in MPC controller, MPC
weights are dimensionless and applied to the scaled MV and OV values. In this example, you penalize
the two outputs equally with the same OV weights.

Weights = struct('MV',[0 0],'MVRate',[0.1 0.1],'OV',[10 10]);

Construct Traditional MPC Controller

Create an MPC controller with the specified plant model, sample time, and horizons.

Ts = 0.05; % Sample time
p = 10; % Prediction horizon
m = 2; % Control horizon
mpcobj = mpc(plant,Ts,p,m,Weights,MV,OV);

Generate Explicit MPC Controller

Explicit MPC executes the equivalent explicit piecewise affine version of the MPC control law defined
by the traditional MPC controller. To generate an explicit MPC controller from a traditional MPC
controller, you must specify the range for each controller state, reference signal, manipulated
variable and measured disturbance. Doing so ensures that the multi-parametric quadratic
programming problem is solved in the parameter space defined by these ranges.

Obtain a range structure for initialization

To obtain a range structure where you can specify the range for each parameter, use the
generateExplicitRange command.

range = generateExplicitRange(mpcobj);

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Specify Ranges for Controller States

MPC controller states include states from the plant model, disturbance model, and noise model, in
that order. Setting the range of a state variable is sometimes difficult when the state does not
correspond to a physical parameter. In that case, multiple runs of open-loop plant simulation with
typical reference and disturbance signals are recommended in order to collect data that reflect the
ranges of states.

range.State.Min(:) = -10000;
range.State.Max(:) = 10000;

Specify Ranges for Reference Signals

6 Explicit MPC Design

6-18

Usually you know the practical range of the reference signals being used at the nominal operating
point in the plant. The ranges used to generate an explicit MPC controller must be at least as large as
the practical range.

range.Reference.Min = [-1;-11];
range.Reference.Max = [1;11];

Specify Ranges for Manipulated Variables

If manipulated variables are constrained, the ranges used to generate an explicit MPC controller
must be at least as large as these limits.

range.ManipulatedVariable.Min = [MV(1).Min; MV(2).Min] - 1;
range.ManipulatedVariable.Max = [MV(1).Max; MV(2).Max] + 1;

Construct Explicit MPC Controller

Use generateExplicitMPC command to obtain the explicit MPC controller with the parameter
ranges previously specified.

mpcobjExplicit = generateExplicitMPC(mpcobj, range);
display(mpcobjExplicit)

Regions found / unexplored: 483/ 0

Explicit MPC Controller

Controller sample time: 0.05 (seconds)
Polyhedral regions: 483
Number of parameters: 10
Is solution simplified: No
State Estimation: Default Kalman gain

Type 'mpcobjExplicit.MPC' for the original implicit MPC design.
Type 'mpcobjExplicit.Range' for the valid range of parameters.
Type 'mpcobjExplicit.OptimizationOptions' for the options used in multi-parametric QP computation.
Type 'mpcobjExplicit.PiecewiseAffineSolution' for regions and gain in each solution.

To join pairs of regions whose corresponding gains are the same and whose union is a convex set, use
the simplify command with the 'exact' method. This practice can reduce the memory footprint of
the explicit MPC controller without sacrificing performance.

mpcobjExplicitSimplified = simplify(mpcobjExplicit, 'exact');
display(mpcobjExplicitSimplified)

Regions to analyze: 471/ 471

Explicit MPC Controller

Controller sample time: 0.05 (seconds)
Polyhedral regions: 471
Number of parameters: 10

 Explicit MPC Control of an Aircraft with Unstable Poles

6-19

Is solution simplified: Yes
State Estimation: Default Kalman gain

Type 'mpcobjExplicitSimplified.MPC' for the original implicit MPC design.
Type 'mpcobjExplicitSimplified.Range' for the valid range of parameters.
Type 'mpcobjExplicitSimplified.OptimizationOptions' for the options used in multi-parametric QP computation.
Type 'mpcobjExplicitSimplified.PiecewiseAffineSolution' for regions and gain in each solution.

The number of piecewise affine regions has been reduced.

Plot Piecewise Affine Partition

You can review any 2-D section of the piecewise affine partition defined by the Explicit MPC control
law.

Obtain a plot parameter structure for initialization

To obtain a parameter structure where you can specify which 2-D section to plot, use the
generatePlotParameters function.

params = generatePlotParameters(mpcobjExplicitSimplified);

Specify parameters for a 2-D plot

In this example, you plot the pitch angle (the 4th state variable) vs. its reference (the 2nd reference
signal). All the other parameters must be fixed at values within their respective ranges.

Fix other state variables.

params.State.Index = [1 2 3 5 6];
params.State.Value = [0 0 0 0 0];

Fix other reference signals.

params.Reference.Index = 1;
params.Reference.Value = 0;

Fix manipulated variables.

params.ManipulatedVariable.Index = [1 2];
params.ManipulatedVariable.Value = [0 0];

Plot the 2-D section

Use plotSection command to plot the 2-D section defined previously.

plotSection(mpcobjExplicitSimplified,params);
axis([-10 10 -10 10])
grid
xlabel('Pitch angle (x_4)')
ylabel('Reference on pitch angle (r_2)')

6 Explicit MPC Design

6-20

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end

Simulate closed-loop control of the linear plant model in Simulink. To do so, for the MPC Controller
block, set the Explicit MPC Controller property to mpcobjExplicitSimplified.

mdl = 'empc_aircraft';
open_system(mdl)
sim(mdl)

 Explicit MPC Control of an Aircraft with Unstable Poles

6-21

6 Explicit MPC Design

6-22

The closed-loop response is identical to the traditional MPC controller designed in “MPC Control of
an Aircraft with Unstable Poles” on page 1-148.

References

[1] P. Kapasouris, M. Athans, and G. Stein, "Design of feedback control systems for unstable plants
with saturating actuators", Proc. IFAC Symp. on Nonlinear Control System Design, Pergamon Press,
pp.302--307, 1990

[2] A. Bemporad, A. Casavola, and E. Mosca, "Nonlinear control of constrained linear systems via
predictive reference management", IEEE® Trans. Automatic Control, vol. AC-42, no. 3, pp. 340-349,
1997.

bdclose(mdl)

See Also

More About
• “Explicit MPC” on page 6-2
• “Explicit MPC Control of a Single-Input-Single-Output Plant” on page 6-7
• “Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output” on page 6-24

 Explicit MPC Control of an Aircraft with Unstable Poles

6-23

Explicit MPC Control of DC Servomotor with Constraint on
Unmeasured Output

This example shows how to use explicit MPC to control a DC servomechanism under voltage and
shaft torque constraints.

For a similar example that uses traditional implicit MPC, see “DC Servomotor with Constraint on
Unmeasured Output” on page 1-10.

Define DC-Servo Motor Model

The linear open-loop dynamic model is defined in plant. Variable tau is the maximum admissible
torque to be used as an output constraint.

[plant,tau] = mpcmotormodel;

Specify input and output signal types for the MPC controller. The second output, torque, is
unmeasurable.

plant = setmpcsignals(plant,'MV',1,'MO',1,'UO',2);

Specify Constraints

The manipulated variable is constrained between +/- 220 volts. Since the plant inputs and outputs are
of different orders of magnitude, you also use scale factors to facilitate MPC tuning. Typical choices
of scale factor are the upper/lower limit or the operating range.

MV = struct('Min',-220,'Max',220,'ScaleFactor',440);

Torque output constraints are only imposed during the first three prediction steps to limit the
complexity of the explicit MPC design.

OV = struct('Min',{Inf, [-tau;-tau;-tau;-Inf]},...
 'Max',{Inf, [tau;tau;tau;Inf]},...
 'ScaleFactor',{2*pi, 2*tau});

Specify Tuning Weights

The control task is to get zero tracking offset for the angular position. Since you only have one
manipulated variable, the shaft torque is allowed to float within its constraint by setting its weight to
zero.

Weights = struct('MV',0,'MVRate',0.1,'OV',[0.1 0]);

Create MPC controller

Create an MPC controller with sample time Ts, prediction horizon p, and control horizon m.

Ts = 0.1;
p = 10;
m = 2;
mpcobj = mpc(plant,Ts,p,m,Weights,MV,OV);

Generate Explicit MPC Controller

Explicit MPC executes the equivalent explicit piecewise affine version of the MPC control law defined
by the traditional implicit MPC controller. To generate an explicit MPC controller from an implicit

6 Explicit MPC Design

6-24

MPC controller, you must specify the range for each controller state, reference signal, manipulated
variable, and measured disturbance so that the multi-parametric quadratic programming problem is
solved in the parameter sets defined by these ranges.

Create a range structure where you can specify the range for each parameter afterwards.

range = generateExplicitRange(mpcobj);

-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Specify ranges for controller states

MPC controller states include states from the plant model, disturbance model, and noise model in
that order. Setting the range of a state variable is sometimes difficult when the state does not
correspond to a physical parameter. In that case, to collect state range data, running multiple open-
loop plant simulations with typical reference and disturbance signals is recommended.

range.State.Min(:) = -1000;
range.State.Max(:) = 1000;

Usually you know the practical range of the reference signals being used at the nominal operating
point in the plant. The ranges used to generate the explicit MPC controller must be at least as large
as the practical range. Note that the range for torque reference is fixed at 0 because it has zero
weight.

range.Reference.Min = [-5;0];
range.Reference.Max = [5;0];

If manipulated variables are constrained, the ranges used to generate the explicit MPC controller
must be at least as large as these limits.

range.ManipulatedVariable.Min = MV.Min - 1;
range.ManipulatedVariable.Max = MV.Max + 1;

Create an explicit MPC controller with the specified ranges.

mpcobjExplicit = generateExplicitMPC(mpcobj,range)

Regions found / unexplored: 75/ 0

Explicit MPC Controller

Controller sample time: 0.1 (seconds)
Polyhedral regions: 75
Number of parameters: 6
Is solution simplified: No
State Estimation: Default Kalman gain

Type 'mpcobjExplicit.MPC' for the original implicit MPC design.
Type 'mpcobjExplicit.Range' for the valid range of parameters.
Type 'mpcobjExplicit.OptimizationOptions' for the options used in multi-parametric QP computation.
Type 'mpcobjExplicit.PiecewiseAffineSolution' for regions and gain in each solution.

 Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output

6-25

Plot Piecewise Affine Partition

You can review any 2-D section of the piecewise affine partition defined by the explicit MPC control
law. To do so, first create a parameter structure where you can specify which 2-D section to plot.

params = generatePlotParameters(mpcobjExplicit);

In this example, you plot the first state variable against the second state variable. All the other
parameters must be fixed at values within their respective ranges.

Fix other state variables.

params.State.Index = [3 4];
params.State.Value = [0 0];

Fix reference signals.

params.Reference.Index = [1 2];
params.Reference.Value = [pi 0];

Fix manipulated variables.

params.ManipulatedVariable.Index = 1;
params.ManipulatedVariable.Value = 0;

Plot the specified 2-D section.

plotSection(mpcobjExplicit,params);
axis([-.3 .3 -2 2]);
grid
title('Section of partition [x3(t)=0, x4(t)=0, u(t-1)=0, r(t)=pi]')
xlabel('x1(t)')
ylabel('x2(t)')

6 Explicit MPC Design

6-26

Simulate Controller Using sim Function

Compare the closed-loop simulation results between the implicit MPC and explicit MPC controllers.

Tstop = 8; % seconds
Tf = round(Tstop/Ts); % simulation iterations
r = [pi 0]; % reference signal
[y1,t1,u1] = sim(mpcobj,Tf,r); % simulation with traditional MPC
[y2,t2,u2] = sim(mpcobjExplicit,Tf,r); % simulation with Explicit MPC

-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

The simulation results are identical.

fprintf('Difference between implicit and explicit MPC trajectories = %g\n',...
 norm(u2-u1)+norm(y2-y1));

Difference between implicit and explicit MPC trajectories = 8.68909e-12

Simulate Using Simulink

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end

 Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output

6-27

Simulate closed-loop control of the linear plant model in Simulink. The Explicit MPC Controller block
is configured to use mpcobjExplicit as its controller.

mdl = 'empc_motor';
open_system(mdl)
sim(mdl)

6 Explicit MPC Design

6-28

The simulation results are not the same.

fprintf('Difference between exact and suboptimal explicit MPC trajectories = %g\n',...
 norm(u3-u2)+norm(y3-y2));

Difference between exact and suboptimal explicit MPC trajectories = 439.399

Plot results.

figure
subplot(3,1,1)
plot(t1,y1(:,1),t3,y3(:,1),'o')
grid
title('Angle (rad)')
legend('Explicit','sub-optimal Explicit')
subplot(3,1,2)
plot(t1,y1(:,2),t3,y3(:,2),'o')
grid
title('Torque (Nm)')
legend('Explicit','sub-optimal Explicit')
subplot(3,1,3)
plot(t1,u1,t3,u3,'o')
grid
title('Voltage (V)')
legend('Explicit','sub-optimal Explicit')

The simulation result using suboptimal explicit MPC is slightly worse.

 Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output

6-31

References

[1] A. Bemporad and E. Mosca, "Fulfilling hard constraints in uncertain linear systems by reference
managing," Automatica, vol. 34, no. 4, pp. 451-461, 1998.

bdclose(mdl)

See Also

More About
• “Explicit MPC” on page 6-2
• “Explicit MPC Control of a Single-Input-Single-Output Plant” on page 6-7
• “Explicit MPC Control of an Aircraft with Unstable Poles” on page 6-17

6 Explicit MPC Design

6-32

Explicit MPC Control of an Inverted Pendulum on a Cart
This example uses an explicit model predictive controller (explicit MPC) to control an inverted
pendulum on a cart.

Product Requirement

This example requires Simulink® Control Design™ software to define the MPC structure by
linearizing a nonlinear Simulink model.

if ~mpcchecktoolboxinstalled('slcontrol')
 disp('Simulink Control Design is required to run this example.')
 return
end

Pendulum/Cart Assembly

The plant for this example is the following cart/pendulum assembly, where x is the cart position and
theta is the pendulum angle.

This system is controlled by exerting a variable force F on the cart. The controller needs to keep the
pendulum upright while moving the cart to a new position or when the pendulum is nudged forward
by an impulse disturbance dF applied at the upper end of the inverted pendulum.

This plant is modeled in Simulink with commonly used blocks.

 Explicit MPC Control of an Inverted Pendulum on a Cart

6-33

mdlPlant = 'mpc_pendcartPlant';
load_system(mdlPlant)
open_system([mdlPlant '/Pendulum and Cart System'],'force')

Control Objectives

Assume the following initial conditions for the cart/pendulum assembly:

• The cart is stationary at x = 0.

• The inverted pendulum is stationary at the upright position theta = 0.

The control objectives are:

• Cart can be moved to a new position between -10 and 10 with a step setpoint change.

• When tracking such a setpoint change, the rise time should be less than 4 seconds (for
performance) and the overshoot should be less than 5 percent (for robustness).

• When an impulse disturbance of magnitude of 2 is applied to the pendulum, the cart should return
to its original position with a maximum displacement of 1. The pendulum should also return to the
upright position with a peak angle displacement of 15 degrees (0.26 radian).

The upright position is an unstable equilibrium for the inverted pendulum, which makes the control
task more challenging.

6 Explicit MPC Design

6-34

Control Structure

For this example, use a single MPC controller with:

• One manipulated variable: variable force F.
• Two measured outputs: Cart position x and pendulum angle theta.
• One unmeasured disturbance: Impulse disturbance dF.

mdlMPC = 'mpc_pendcartExplicitMPC';
open_system(mdlMPC)

Although cart velocity x_dot and pendulum angular velocity theta_dot are available from the plant
model, to make the design case more realistic, they are excluded as MPC measurements.

While the cart position setpoint varies (step input), the pendulum angle setpoint is constant (0 =
upright position).

Linear Plant Model

Since the MPC controller requires a linear time-invariant (LTI) plant model for prediction, linearize
the Simulink plant model at the initial operating point.

Specify linearization input and output points

io(1) = linio([mdlPlant '/dF'],1,'openinput');
io(2) = linio([mdlPlant '/F'],1,'openinput');
io(3) = linio([mdlPlant '/Pendulum and Cart System'],1,'openoutput');
io(4) = linio([mdlPlant '/Pendulum and Cart System'],3,'openoutput');

Create operating point specifications for the plant initial conditions.

opspec = operspec(mdlPlant);

 Explicit MPC Control of an Inverted Pendulum on a Cart

6-35

The first state is cart position x, which has a known initial state of 0.

opspec.States(1).Known = true;
opspec.States(1).x = 0;

The third state is pendulum angle theta, which has a known initial state of 0.

opspec.States(3).Known = true;
opspec.States(3).x = 0;

Compute operating point using these specifications.

options = findopOptions('DisplayReport',false);
op = findop(mdlPlant,opspec,options);

Obtain the linear plant model at the specified operating point.

plant = linearize(mdlPlant,op,io);
plant.InputName = {'dF';'F'};
plant.OutputName = {'x';'theta'};

Examine the poles of the linearized plant.

pole(plant)

ans =

 0
 -11.9115
 -3.2138
 5.1253

The plant has an integrator and an unstable pole.

bdclose(mdlPlant)

Traditional (Implicit) MPC Design

The plant has two inputs, dF and F, and two outputs, x and theta. In this example, dF is specified as
an unmeasured disturbance used by the MPC controller for better disturbance rejection. Set the plant
signal types.

plant = setmpcsignals(plant,'ud',1,'mv',2);

To control an unstable plant, the controller sample time cannot be too large (poor disturbance
rejection) or too small (excessive computation load). Similarly, the prediction horizon cannot be too
long (the plant unstable mode would dominate) or too short (constraint violations would be
unforeseen). Use the following parameters for this example:

Ts = 0.01;
PredictionHorizon = 50;
ControlHorizon = 5;
mpcobj = mpc(plant,Ts,PredictionHorizon,ControlHorizon);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

6 Explicit MPC Design

6-36

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
 for output(s) y1 and zero weight for output(s) y2

There is a limitation on how much force we can apply to the cart, which is specified as hard
constraints on manipulated variable F.

mpcobj.MV.Min = -200;
mpcobj.MV.Max = 200;

It is good practice to scale plant inputs and outputs before designing weights. In this case, since the
range of the manipulated variable is greater than the range of the plant outputs by two orders of
magnitude, scale the MV input by 100.

mpcobj.MV.ScaleFactor = 100;

To improve controller robustness, increase the weight on the MV rate of change from 0.1 to 1.

mpcobj.Weights.MVRate = 1;

To achieve balanced performance, adjust the weights on the plant outputs. The first weight is
associated with cart position x and the second weight is associated with angle theta.

mpcobj.Weights.OV = [1.2 1];

To achieve more aggressive disturbance rejection, increase the state estimator gain by multiplying
the default disturbance model gains by a factor of 10.

Update the input disturbance model.

disturbance_model = getindist(mpcobj);
setindist(mpcobj,'model',disturbance_model*10);

-->Converting model to discrete time.
-->The "Model.Disturbance" property of "mpc" object is empty:
 Assuming unmeasured input disturbance #1 is integrated white noise.
 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Update the output disturbance model.

disturbance_model = getoutdist(mpcobj);
setoutdist(mpcobj,'model',disturbance_model*10);

-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Explicit MPC Generation

A simple implicit MPC controller, without the need for constraint or weight changes at run-time, can
be converted into an explicit MPC controller with the same control performance. The key benefit of
using Explicit MPC is that it avoids real-time optimization, and as a result, is suitable for industrial
applications that demand fast sample time. The tradeoff is that explicit MPC has a high memory
footprint because optimal solutions for all feasible regions are pre-computed offline and stored for
run-time access.

 Explicit MPC Control of an Inverted Pendulum on a Cart

6-37

To generate an explicit MPC controller from an implicit MPC controller, define the ranges for
parameters such as plant states, references, and manipulated variables. These ranges should cover
the operating space for which the plant and controller are designed, to your best knowledge.

range = generateExplicitRange(mpcobj);
range.State.Min(:) = -20; % largest range comes from cart position x
range.State.Max(:) = 20;
range.Reference.Min = -20; % largest range comes from cart position x
range.Reference.Max = 20;
range.ManipulatedVariable.Min = -200;
range.ManipulatedVariable.Max = 200;

-->Converting model to discrete time.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Generate an explicit MPC controller for the defined ranges.

mpcobjExplicit = generateExplicitMPC(mpcobj,range);

Regions found / unexplored: 92/ 0

To use the explicit MPC controller in Simulink, specify it in the Explicit MPC Controller block dialog
in your Simulink model.

Closed-Loop Simulation

Validate the MPC design with a closed-loop simulation in Simulink.

open_system([mdlMPC '/Scope'])
sim(mdlMPC)

6 Explicit MPC Design

6-38

 Explicit MPC Control of an Inverted Pendulum on a Cart

6-39

In the nonlinear simulation, all the control objectives are successfully achieved.

Comparing with the results from “Control of an Inverted Pendulum on a Cart” on page 1-132, the
implicit and explicit MPC controllers deliver identical performance as expected.

Discussion

It is important to point out that the designed MPC controller has its limitations. For example, if you
increase the step setpoint change to 15, the pendulum fails to recover its upright position during the
transition.

To reach the longer distance within the same rise time, the controller applies more force to the cart
at the beginning. As a result, the pendulum is displaced from its upright position by a larger angle
such as 60 degrees. At such angles, the plant dynamics differ significantly from the LTI predictive
model obtained at theta = 0. As a result, errors in the prediction of plant behavior exceed what the
built-in MPC robustness can handle, and the controller fails to perform properly.

A simple workaround to avoid the pendulum falling is to restrict pendulum displacement by adding
soft output constraints to theta and reducing the ECR weight on constraint softening.

mpcobj.OV(2).Min = -pi/2;
mpcobj.OV(2).Max = pi/2;
mpcobj.Weights.ECR = 100;

However, with these new controller settings, it is no longer possible to reach the longer distance
within the required rise time. In other words, controller performance is sacrificed to avoid violation of
soft output constraints.

6 Explicit MPC Design

6-40

To reach longer distances within the same rise time, the controller needs more accurate models at
different angle to improve prediction. Another example “Gain-Scheduled MPC Control of an Inverted
Pendulum on a Cart” on page 8-58 shows how to use gain scheduling MPC to achieve the longer
distances.

Close the Simulink model.

bdclose(mdlMPC)

See Also

More About
• “Explicit MPC” on page 6-2
• “Control of an Inverted Pendulum on a Cart” on page 1-132
• “Gain-Scheduled MPC Control of an Inverted Pendulum on a Cart” on page 8-58

 Explicit MPC Control of an Inverted Pendulum on a Cart

6-41

Adaptive MPC Design

• “Adaptive MPC” on page 7-2
• “Model Updating Strategy” on page 7-5
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive Linearization”

on page 7-7
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation”

on page 7-17
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Linear Parameter-Varying System”

on page 7-27
• “Obstacle Avoidance Using Adaptive Model Predictive Control” on page 7-38
• “Time-Varying MPC” on page 7-49
• “Time-Varying MPC Control of a Time-Varying Plant” on page 7-52
• “Time-Varying MPC Control of an Inverted Pendulum on a Cart” on page 7-58

7

Adaptive MPC

When to Use Adaptive MPC
MPC control predicts future behavior using a linear-time-invariant (LTI) dynamic model. In practice,
such predictions are never exact, and a key tuning objective is to make MPC insensitive to prediction
errors. In many applications, this approach is sufficient for robust controller performance.

If the plant is strongly nonlinear or its characteristics vary dramatically with time, LTI prediction
accuracy might degrade so much that MPC performance becomes unacceptable. Adaptive MPC can
address this degradation by adapting the prediction model for changing operating conditions. As
implemented in the Model Predictive Control Toolbox software, adaptive MPC uses a fixed model
structure, but allows the models parameters to evolve with time. Ideally, whenever the controller
requires a prediction (at the beginning of each control interval) it uses a model appropriate for the
current conditions.

After you design an MPC controller for the average or most likely operating conditions of your control
system, you can implement an adaptive MPC controller based on that design. For information about
designing that initial controller, see “Controller Creation”.

At each control interval, the adaptive MPC controller updates the plant model and nominal
conditions. Once updated, the model and conditions remain constant over the prediction horizon. If
you can predict how the plant and nominal conditions vary in the future, you can use “Time-Varying
MPC” on page 7-49 to specify a model that changes over the prediction horizon.

An alternative option for controlling a nonlinear or time-varying plant is to use gain-scheduled MPC
control. See “Gain-Scheduled MPC” on page 8-2.)

Plant Model
The plant model used as the basis for adaptive MPC must be an LTI discrete-time, state-space model.
See “Basic Models” or “Linearization Basics” (Simulink Control Design) for information about
creating and modifying such systems. The plant model structure is as follows:

x k + 1 = Ax k + Buu k + Bvv k + Bdd k
y k = Cx k + Dvv k + Ddd k .

Here, the matrices A, Bu, Bv, Bd, C, Dv, and Dd are the parameters that can vary with time. The other
variables in the expression are:

• k — Time index (current control interval).
• x — nx plant model states.
• u — nu manipulated inputs (MVs). These are the one or more inputs that are adjusted by the MPC

controller.
• v — nv measured disturbance inputs.
• d — nd unmeasured disturbance inputs.
• y — ny plant outputs, including nym measured and nyu unmeasured outputs. The total number of

outputs, ny = nym + nyu. Also, nym ≥ 1 (there is at least one measured output).

Additional requirements for the plant model in adaptive MPC control are:

7 Adaptive MPC Design

7-2

• Sample time (Ts) is a constant and identical to the MPC control interval.
• Time delay (if any) is absorbed as discrete states (see, for example, the Control System Toolbox

absorbDelay function).
• nx, nu, ny, nd, nym, and nyu are all constants.
• Adaptive MPC prohibits direct feed-through from any manipulated variable to any plant output.

Thus, Du = 0 in the above model.
• The input and output signal configuration remains constant.

For more details about creation of plant models for MPC control, see “Plant Specification”.

Nominal Operating Point
A traditional MPC controller includes a nominal operating point at which the plant model applies,
such as the condition at which you linearize a nonlinear model to obtain the LTI approximation. The
Model.Nominal property of the controller contains this information.

In adaptive MPC, as time evolves you should update the nominal operating point to be consistent with
the updated plant model.

You can write the plant model in terms of deviations from the nominal conditions:

x k + 1 = x + A x k − x + B ut k − ut + Δx
y k = y + C x k − x + D ut k − ut .

Here, the matrices A, B, C, and D are the parameter matrices to be updated. ut is the combined plant
input variable, comprising the u, v, and d variables defined above. The nominal conditions to be
updated are:

• x — nx nominal states
• Δx — nx nominal state increments
• ut — nut nominal inputs
• y — ny nominal outputs

State Estimation
By default, MPC uses a static Kalman filter (KF) to update its controller states, which include the nxp
plant model states, nd (≥ 0) disturbance model states, and nn (≥ 0) measurement noise model states.
This KF requires two gain matrices, L and M. By default, the MPC controller calculates them during
initialization. They depend upon the plant, disturbance, and noise model parameters, and
assumptions regarding the stochastic noise signals driving the disturbance and noise models. For
more details about state estimation in traditional MPC, see “Controller State Estimation” on page 2-2.

Adaptive MPC uses a Kalman filter and adjusts the gains, L and M, at each control interval to
maintain consistency with the updated plant model. The result is a linear-time-varying Kalman filter
(LTVKF):

Lk = AkPk k− 1Cm, k
T + N Cm, kPk k− 1Cm, k

T + R −1

Mk = Pk k− 1Cm, k
T Cm, kPk k− 1Cm, k

T + R −1

Pk + 1 k = AkPk k− 1Ak
T − AkPk k− 1Cm, k

T + N Lk
T + Q .

 Adaptive MPC

7-3

Here, Q, R, and N are constant covariance matrices defined as in MPC state estimation. Ak and Cm,k
are state-space parameter matrices for the entire controller state, defined as for traditional MPC but
with the portions affected by the plant model updated to time k. The value Pk|k–1 is the state estimate
error covariance matrix at time k based on information available at time k–1. Finally, Lk and Mk are
the updated KF gain matrices. For details on the KF formulation used in traditional MPC, see
“Controller State Estimation” on page 2-2. By default, the initial condition, P0|–1, is the static KF
solution prior to any model updates.

The KF gain and the state error covariance matrix depend upon the model parameters and the
assumptions leading to the constant Q, R, and N matrices. If the plant model is constant, the
expressions for Lk and Mk converge to the equivalent static KF solution used in traditional MPC.

The equations for the controller state evolution at time k are identical to the KF formulation of
traditional MPC described in “Controller State Estimation” on page 2-2, but with the estimator gains
and state space matrices updated to time k.

You have the option to update the controller state using a procedure external to the MPC controller,
and then supply the updated state to MPC at each control instant, k. In this case, the MPC controller
skips all KF and LTVKF calculations.

See Also

More About
• “Model Updating Strategy” on page 7-5
• “Controller State Estimation” on page 2-2
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive Linearization” on page

7-7
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation” on page

7-17

7 Adaptive MPC Design

7-4

Model Updating Strategy

Overview
Typically, to implement “Adaptive MPC” on page 7-2 control, you can use one of the following model-
updating strategies:

• Successive linearization — Given a mechanistic plant model, for example a set of nonlinear
ordinary differential and algebraic equations, derive its LTI approximation at the current
operating condition. For example, Simulink Control Design™ software provides linearization tools
for this purpose.

• Using a Linear Parameter Varying (LPV) model — Control System Toolbox software provides a
LPV System Simulink block that allows you to specify an array of LTI models with scheduling
parameters. You can perform batch linearization offline to obtain an array of plant models at the
desired operating points and then use them in the LPV System block to provide model updating to
the Adaptive MPC Controller Simulink block.

• Online parameter estimation — Given an empirical model structure and initial estimates of its
parameters, use the available real-time plant measurements to estimate the current model
parameters. For example, the System Identification Toolbox software provides real-time parameter
estimation tools.

To implement “Time-Varying MPC” on page 7-49 control, you need to obtain LTI plants for the future
prediction horizon steps. In this case, you can use the successive linearization and LPV model
approaches as long as each model is a function of time

Other Considerations
There are several factors to keep in mind when designing and implementing an adaptive MPC
controller.

• Before attempting adaptive MPC, define and tune an MPC controller for the most typical (nominal)
operating condition. Make sure the system can tolerate some prediction error. Test this tolerance
via simulations in which the MPC prediction model differs from the plant. See “MPC Design”.

• An adaptive MPC controller requires more real-time computations than traditional MPC. In
addition to the state estimation calculation, you must also implement and test a model-updating
strategy, which might be computationally intensive.

• You must determine MPC tuning constants that provide robust performance over the expected
range of model parameters. See “Tune Weights” on page 1-43.

• Model updating via online parameter estimation is most effective when parameter variations occur
gradually.

• When implementing adaptive MPC control, adapt only parameters defining the Model.Plant
property of the controller. The disturbance and noise models, if any, remain constant.

See Also
Adaptive MPC Controller

 Model Updating Strategy

7-5

More About
• “Adaptive MPC” on page 7-2
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive Linearization” on page

7-7
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation” on page

7-17

7 Adaptive MPC Design

7-6

Adaptive MPC Control of Nonlinear Chemical Reactor Using
Successive Linearization

This example shows how to use an Adaptive MPC controller to control a nonlinear continuous stirred
tank reactor (CSTR) as it transitions from low conversion rate to high conversion rate.

A first principle nonlinear plant model is available and being linearized at each control interval. The
adaptive MPC controller then updates its internal predictive model with the linearized plant model
and achieves nonlinear control successfully.

About the Continuous Stirred Tank Reactor

A Continuously Stirred Tank Reactor (CSTR) is a common chemical system in the process industry. A
schematic of the CSTR system is:

This is a jacketed non-adiabatic tank reactor described extensively in Seborg's book, "Process
Dynamics and Control", published by Wiley, 2004. The vessel is assumed to be perfectly mixed, and a
single first-order exothermic and irreversible reaction, A --> B, takes place. The inlet stream of
reagent A is fed to the tank at a constant volumetric rate. The product stream exits continuously at
the same volumetric rate and liquid density is constant. Thus the volume of reacting liquid is
constant.

The inputs of the CSTR model are:

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive Linearization

7-7

and the outputs (y(t)), which are also the states of the model (x(t)), are:

The control objective is to maintain the concentration of reagent A, at its desired setpoint, which
changes over time when reactor transitions from low conversion rate to high conversion rate. The
coolant temperature is the manipulated variable used by the MPC controller to track the reference
as well as reject the measured disturbance arising from the inlet feed stream temperature . The
inlet feed stream concentration, , is assumed to be constant. The Simulink model
mpc_cstr_plant implements the nonlinear CSTR plant.

We also assume that direct measurements of concentrations are unavailable or infrequent, which is
the usual case in practice. Instead, we use a "soft sensor" to estimate CA based on temperature
measurements and the plant model. For more information on the CSTR reactor and related examples,
see “CSTR Model”.

About Adaptive Model Predictive Control

It is well known that the CSTR dynamics are strongly nonlinear with respect to reactor temperature
variations and can be open-loop unstable during the transition from one operating condition to
another. A single MPC controller designed at a particular operating condition cannot give satisfactory
control performance over a wide operating range.

To control the nonlinear CSTR plant with linear MPC control technique, you have a few options:

• If a linear plant model cannot be obtained at run time, first you need to obtain several linear plant
models offline at different operating conditions that cover the typical operating range. Next you
can choose one of the two approaches to implement MPC control strategy:

(1) Design several MPC controllers offline, one for each plant model. At run time, use Multiple MPC
Controller block that switches MPC controllers from one to another based on a desired scheduling
strategy. For more details, see “Gain-Scheduled MPC Control of Nonlinear Chemical Reactor” on page
8-22. Use this approach when the plant models have different orders or time delays.

(2) Design one MPC controller offline at the initial operating point. At run time, use Adaptive MPC
Controller block (updating predictive model at each control interval) together with Linear Parameter
Varying (LPV) System block (supplying linear plant model with a scheduling strategy). See “Adaptive
MPC Control of Nonlinear Chemical Reactor Using Linear Parameter-Varying System” on page 7-27
for more details. Use this approach when all the plant models have the same order and time delay.

• If a linear plant model can be obtained at run time, you should use Adaptive MPC Controller block
to achieve nonlinear control. There are two typical ways to obtain a linear plant model online:

(1) Use successive linearization as shown in this example. Use this approach when a nonlinear plant
model is available and can be linearized at run time.

(2) Use online estimation to identify a linear model when loop is closed. See “Adaptive MPC Control of
Nonlinear Chemical Reactor Using Online Model Estimation” on page 7-17 for more details. Use this
approach when linear plant model cannot be obtained from either an LPV system or successive
linearization.

7 Adaptive MPC Design

7-8

Obtain Linear Plant Model at Initial Operating Condition

To implement an adaptive MPC controller, first you need to design a MPC controller at the initial
operating point where CAi is 10 kgmol/m^3, Ti and Tc are 298.15 K.

Create operating point specification.

plant_mdl = 'mpc_cstr_plant';
op = operspec(plant_mdl);

Feed concentration is known at the initial condition.

op.Inputs(1).u = 10;
op.Inputs(1).Known = true;

Feed temperature is known at the initial condition.

op.Inputs(2).u = 298.15;
op.Inputs(2).Known = true;

Coolant temperature is known at the initial condition.

op.Inputs(3).u = 298.15;
op.Inputs(3).Known = true;

Compute initial condition.

[op_point, op_report] = findop(plant_mdl,op);

 Operating point search report:

opreport =

 Operating point search report for the Model mpc_cstr_plant.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

 Min x Max dxMin dx dxMax
 ___ ______ ___ _____ ___________ _____

(1.) mpc_cstr_plant/CSTR/Integrator
 0 311.26 Inf 0 8.1176e-11 0
(2.) mpc_cstr_plant/CSTR/Integrator1
 0 8.5698 Inf 0 -6.8709e-12 0

Inputs:

 Min u Max
 ______ ______ ______

(1.) mpc_cstr_plant/CAi
 10 10 10
(2.) mpc_cstr_plant/Ti
 298.15 298.15 298.15

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive Linearization

7-9

(3.) mpc_cstr_plant/Tc
 298.15 298.15 298.15

Outputs:

 Min y Max
 ____ ______ ___

(1.) mpc_cstr_plant/T
 -Inf 311.26 Inf
(2.) mpc_cstr_plant/CA
 -Inf 8.5698 Inf

Obtain nominal values of x, y and u.

x0 = [op_report.States(1).x;op_report.States(2).x];
y0 = [op_report.Outputs(1).y;op_report.Outputs(2).y];
u0 = [op_report.Inputs(1).u;op_report.Inputs(2).u;op_report.Inputs(3).u];

Obtain linear plant model at the initial condition.

sys = linearize(plant_mdl, op_point);

Drop the first plant input CAi because it is not used by MPC.

sys = sys(:,2:3);

Discretize the plant model because Adaptive MPC controller only accepts a discrete-time plant model.

Ts = 0.5;
plant = c2d(sys,Ts);

Design MPC Controller

You design an MPC at the initial operating condition. When running in the adaptive mode, the plant
model is updated at run time.

Specify signal types used in MPC.

plant.InputGroup.MeasuredDisturbances = 1;
plant.InputGroup.ManipulatedVariables = 2;
plant.OutputGroup.Measured = 1;
plant.OutputGroup.Unmeasured = 2;
plant.InputName = {'Ti','Tc'};
plant.OutputName = {'T','CA'};

Create MPC controller with default prediction and control horizons

mpcobj = mpc(plant);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
 for output(s) y1 and zero weight for output(s) y2

Set nominal values in the controller

7 Adaptive MPC Design

7-10

mpcobj.Model.Nominal = struct('X', x0, 'U', u0(2:3), 'Y', y0, 'DX', [0 0]);

Set scale factors because plant input and output signals have different orders of magnitude

Uscale = [30 50];
Yscale = [50 10];
mpcobj.DV(1).ScaleFactor = Uscale(1);
mpcobj.MV(1).ScaleFactor = Uscale(2);
mpcobj.OV(1).ScaleFactor = Yscale(1);
mpcobj.OV(2).ScaleFactor = Yscale(2);

Let reactor temperature T float (i.e. with no setpoint tracking error penalty), because the objective is
to control reactor concentration CA and only one manipulated variable (coolant temperature Tc) is
available.

mpcobj.Weights.OV = [0 1];

Due to the physical constraint of coolant jacket, Tc rate of change is bounded by degrees per minute.

mpcobj.MV.RateMin = -2;
mpcobj.MV.RateMax = 2;

Implement Adaptive MPC Control of CSTR Plant in Simulink (R)

Open the Simulink model.

mdl = 'ampc_cstr_linearization';
open_system(mdl)

The model includes three parts:

1 The "CSTR" block implements the nonlinear plant model.
2 The "Adaptive MPC Controller" block runs the designed MPC controller in the adaptive mode.
3 The "Successive Linearizer" block in a MATLAB Function block that linearizes a first principle

nonlinear CSTR plant and provides the linear plant model to the "Adaptive MPC Controller" block

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive Linearization

7-11

at each control interval. Double click the block to see the MATLAB code. You can use the block as
a template to develop appropriate linearizer for your own applications.

Note that the new linear plant model must be a discrete time state space system with the same order
and sample time as the original plant model has. If the plant has time delay, it must also be same as
the original time delay and absorbed into the state space model.

Validate Adaptive MPC Control Performance

Controller performance is validated against both setpoint tracking and disturbance rejection.

• Tracking: reactor concentration CA setpoint transitions from original 8.57 (low conversion rate) to
2 (high conversion rate) kgmol/m^3. During the transition, the plant first becomes unstable then
stable again (see the poles plot).

• Regulating: feed temperature Ti has slow fluctuation represented by a sine wave with amplitude of
5 degrees, which is a measured disturbance fed to the MPC controller.

Simulate the closed-loop performance.

open_system([mdl '/Concentration'])
open_system([mdl '/Temperature'])
open_system([mdl '/Pole'])
sim(mdl)

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

7 Adaptive MPC Design

7-12

bdclose(mdl)

The tracking and regulating performance is very satisfactory. In an application to a real reactor,
however, model inaccuracies and unmeasured disturbances could cause poorer tracking than shown
here. Additional simulations could be used to study these effects.

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive Linearization

7-13

Compare with Non-Adaptive MPC Control

Adaptive MPC provides superior control performance than a non-adaptive MPC. To illustrate this
point, the control performance of the same MPC controller running in the non-adaptive mode is
shown below. The controller is implemented with a MPC Controller block.

mdl1 = 'ampc_cstr_no_linearization';
open_system(mdl1)
open_system([mdl1 '/Concentration'])
open_system([mdl1 '/Temperature'])
sim(mdl1)

7 Adaptive MPC Design

7-14

As expected, the tracking and regulating performance of non-adaptive MPC is not acceptable.

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive Linearization

7-15

bdclose(mdl1)

See Also
Adaptive MPC Controller

More About
• “Adaptive MPC” on page 7-2
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation” on page

7-17

7 Adaptive MPC Design

7-16

Adaptive MPC Control of Nonlinear Chemical Reactor Using
Online Model Estimation

This example shows how to use an Adaptive MPC controller to control a nonlinear continuous stirred
tank reactor (CSTR) as it transitions from low conversion rate to high conversion rate.

A discrete time ARX model is being identified online by the Recursive Polynomial Model Estimator
block at each control interval. The adaptive MPC controller uses it to update internal plant model and
achieves nonlinear control successfully.

About the Continuous Stirred Tank Reactor

A Continuously Stirred Tank Reactor (CSTR) is a common chemical system in the process industry. A
schematic of the CSTR system is:

This is a jacketed non-adiabatic tank reactor described extensively in Seborg's book, "Process
Dynamics and Control", published by Wiley, 2004. The vessel is assumed to be perfectly mixed, and a
single first-order exothermic and irreversible reaction, A --> B, takes place. The inlet stream of
reagent A is fed to the tank at a constant volumetric rate. The product stream exits continuously at
the same volumetric rate and liquid density is constant. Thus the volume of reacting liquid is
constant.

The inputs of the CSTR model are:

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation

7-17

and the outputs (y(t)), which are also the states of the model (x(t)), are:

The control objective is to maintain the reactor temperature at its desired setpoint, which changes
over time when reactor transitions from low conversion rate to high conversion rate. The coolant
temperature is the manipulated variable used by the MPC controller to track the reference as well
as reject the measured disturbance arising from the inlet feed stream temperature . The inlet feed
stream concentration, , is assumed to be constant. The Simulink model mpc_cstr_plant
implements the nonlinear CSTR plant. For more information on the CSTR reactor and related
examples, see “CSTR Model”.

About Adaptive Model Predictive Control

It is well known that the CSTR dynamics are strongly nonlinear with respect to reactor temperature
variations and can be open-loop unstable during the transition from one operating condition to
another. A single MPC controller designed at a particular operating condition cannot give satisfactory
control performance over a wide operating range.

To control the nonlinear CSTR plant with linear MPC control technique, you have a few options:

• If a linear plant model cannot be obtained at run time, first you need to obtain several linear plant
models offline at different operating conditions that cover the typical operating range. Next you
can choose one of the two approaches to implement MPC control strategy:

(1) Design several MPC controllers offline, one for each plant model. At run time, use Multiple MPC
Controller block that switches MPC controllers from one to another based on a desired scheduling
strategy. See “Gain-Scheduled MPC Control of Nonlinear Chemical Reactor” on page 8-22 for more
details. Use this approach when the plant models have different orders or time delays.

(2) Design one MPC controller offline at the initial operating point. At run time, use Adaptive MPC
Controller block (updating predictive model at each control interval) together with Linear Parameter
Varying (LPV) System block (supplying linear plant model with a scheduling strategy). See “Adaptive
MPC Control of Nonlinear Chemical Reactor Using Linear Parameter-Varying System” on page 7-27
for more details. Use this approach when all the plant models have the same order and time delay.

• If a linear plant model can be obtained at run time, you should use Adaptive MPC Controller block
to achieve nonlinear control. There are two typical ways to obtain a linear plant model online:

(1) Use successive linearization. See “Adaptive MPC Control of Nonlinear Chemical Reactor Using
Successive Linearization” on page 7-7 for more details. Use this approach when a nonlinear plant
model is available and can be linearized at run time.

(2) Use online estimation to identify a linear model when loop is closed, as shown in this example.
Use this approach when linear plant model cannot be obtained from either an LPV system or
successive linearization.

Obtain Linear Plant Model at Initial Operating Condition

To implement an adaptive MPC controller, first you need to design a MPC controller at the initial
operating point where CAi is 10 kgmol/m^3, Ti and Tc are 298.15 K.

Create operating point specification.

7 Adaptive MPC Design

7-18

plant_mdl = 'mpc_cstr_plant';
op = operspec(plant_mdl);

Feed concentration is known at the initial condition.

op.Inputs(1).u = 10;
op.Inputs(1).Known = true;

Feed temperature is known at the initial condition.

op.Inputs(2).u = 298.15;
op.Inputs(2).Known = true;

Coolant temperature is known at the initial condition.

op.Inputs(3).u = 298.15;
op.Inputs(3).Known = true;

Compute initial condition.

[op_point, op_report] = findop(plant_mdl,op);

 Operating point search report:

opreport =

 Operating point search report for the Model mpc_cstr_plant.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

 Min x Max dxMin dx dxMax
 ___ ______ ___ _____ ___________ _____

(1.) mpc_cstr_plant/CSTR/Integrator
 0 311.26 Inf 0 8.1176e-11 0
(2.) mpc_cstr_plant/CSTR/Integrator1
 0 8.5698 Inf 0 -6.8709e-12 0

Inputs:

 Min u Max
 ______ ______ ______

(1.) mpc_cstr_plant/CAi
 10 10 10
(2.) mpc_cstr_plant/Ti
 298.15 298.15 298.15
(3.) mpc_cstr_plant/Tc
 298.15 298.15 298.15

Outputs:

 Min y Max
 ____ ______ ___

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation

7-19

(1.) mpc_cstr_plant/T
 -Inf 311.26 Inf
(2.) mpc_cstr_plant/CA
 -Inf 8.5698 Inf

Obtain nominal values of x, y and u.

x0 = [op_report.States(1).x;op_report.States(2).x];
y0 = [op_report.Outputs(1).y;op_report.Outputs(2).y];
u0 = [op_report.Inputs(1).u;op_report.Inputs(2).u;op_report.Inputs(3).u];

Obtain linear plant model at the initial condition.

sys = linearize(plant_mdl, op_point);

Drop the first plant input CAi and second output CA because they are not used by MPC.

sys = sys(1,2:3);

Discretize the plant model because Adaptive MPC controller only accepts a discrete-time plant model.

Ts = 0.5;
plant = c2d(sys,Ts);

Design MPC Controller

You design an MPC at the initial operating condition. When running in the adaptive mode, the plant
model is updated at run time.

Specify signal types used in MPC.

plant.InputGroup.MeasuredDisturbances = 1;
plant.InputGroup.ManipulatedVariables = 2;
plant.OutputGroup.Measured = 1;
plant.InputName = {'Ti','Tc'};
plant.OutputName = {'T'};

Create MPC controller with default prediction and control horizons

mpcobj = mpc(plant);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Set nominal values in the controller

mpcobj.Model.Nominal = struct('X', x0, 'U', u0(2:3), 'Y', y0(1), 'DX', [0 0]);

Set scale factors because plant input and output signals have different orders of magnitude

Uscale = [30 50];
Yscale = 50;
mpcobj.DV.ScaleFactor = Uscale(1);
mpcobj.MV.ScaleFactor = Uscale(2);
mpcobj.OV.ScaleFactor = Yscale;

7 Adaptive MPC Design

7-20

Due to the physical constraint of coolant jacket, Tc rate of change is bounded by 2 degrees per
minute.

mpcobj.MV.RateMin = -2;
mpcobj.MV.RateMax = 2;

Reactor concentration is not directly controlled in this example. If reactor temperature can be
successfully controlled, the concentration will achieve desired performance requirement due to the
strongly coupling between the two variables.

Implement Adaptive MPC Control of CSTR Plant in Simulink (R)

To run this example with online estimation, System Identification Toolbox™ software is required.

if ~mpcchecktoolboxinstalled('ident')
 disp('System Identification Toolbox(TM) is required to run this example.')
 return
end

Open the Simulink model.

mdl = 'ampc_cstr_estimation';
open_system(mdl);

The model includes three parts:

1 The "CSTR" block implements the nonlinear plant model.
2 The "Adaptive MPC Controller" block runs the designed MPC controller in the adaptive mode.
3 The "Recursive Polynomial Model Estimator" block estimates a two-input (Ti and Tc) and one-

output (T) discrete time ARX model based on the measured temperatures. The estimated model is
then converted into state space form by the "Model Type Converter" block and fed to the
"Adaptive MPC Controller" block at each control interval.

In this example, the initial plant model is used to initialize the online estimator with parameter
covariance matrix set to 1. The online estimation method is "Kalman Filter" with noise covariance
matrix set to 0.01. The online estimation result is sensitive to these parameters and you can further
adjust them to achieve better estimation result.

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation

7-21

Both "Recursive Polynomial Model Estimator" and "Model Type Converter" are provided by System
Identification Toolbox. You can use the two blocks as a template to develop appropriate online model
estimation for your own applications.

The initial value of A(q) and B(q) variables are populated with the numerator and denominator of the
initial plant model.

[num, den] = tfdata(plant);
Aq = den{1};
Bq = num;

Note that the new linear plant model must be a discrete time state space system with the same order
and sample time as the original plant model has. If the plant has time delay, it must also be same as
the original time delay and absorbed into the state space model.

Validate Adaptive MPC Control Performance

Controller performance is validated against both setpoint tracking and disturbance rejection.

• Tracking: reactor temperature T setpoint transitions from original 311 K (low conversion rate) to
377 K (high conversion rate) kgmol/m^3.

• Regulating: feed temperature Ti has slow fluctuation represented by a sine wave with amplitude of
5 degrees, which is a measured disturbance fed to MPC controller.

Simulate the closed-loop performance.

open_system([mdl '/Concentration'])
open_system([mdl '/Temperature'])
sim(mdl)

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

7 Adaptive MPC Design

7-22

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation

7-23

The tracking and regulating performance is very satisfactory.

Compare with Non-Adaptive MPC Control

Adaptive MPC provides superior control performance than non-adaptive MPC. To illustrate this point,
the control performance of the same MPC controller running in the non-adaptive mode is shown
below. The controller is implemented with a MPC Controller block.

mdl1 = 'ampc_cstr_no_estimation';
open_system(mdl1)
open_system([mdl1 '/Concentration'])
open_system([mdl1 '/Temperature'])
sim(mdl1)

7 Adaptive MPC Design

7-24

As expected, the tracking and regulating performance is unacceptable.

bdclose(mdl)
bdclose(mdl1)

See Also
Adaptive MPC Controller

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation

7-25

More About
• “Adaptive MPC” on page 7-2
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive Linearization” on page

7-7

7 Adaptive MPC Design

7-26

Adaptive MPC Control of Nonlinear Chemical Reactor Using
Linear Parameter-Varying System

This example shows how to use an adaptive MPC controller to control a nonlinear continuous stirred
tank reactor (CSTR) as it transitions from low conversion rate to high conversion rate.

A linear parameter varying (LPV) system consisting of three linear plant models is constructed offline
to describe the local plant dynamics across the operating range. The adaptive MPC controller then
uses the LPV system to update the internal predictive model at each control interval and achieves
nonlinear control successfully.

About the Continuous Stirred Tank Reactor

A continuously stirred tank reactor (CSTR) is a common chemical system in the process industry. A
schematic of the CSTR system is:

This system is a jacketed non-adiabatic tank reactor described extensively in [1]. The vessel is
assumed to be perfectly mixed, and a single first-order exothermic and irreversible reaction, A --> B,
takes place. The inlet stream of reagent A is fed to the tank at a constant volumetric rate. The
product stream exits continuously at the same volumetric rate, and liquid density is constant. Thus,
the volume of reacting liquid is constant.

The inputs of the CSTR model are:

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Linear Parameter-Varying System

7-27

The outputs of the model, which are also the model states, are:

The control objective is to maintain the concentration of reagent A, at its desired setpoint, which
changes over time when the reactor transitions from a low conversion rate to a high conversion rate.
The coolant temperature is the manipulated variable used by the MPC controller to track the
reference. The inlet feed stream concentration and temperature are assumed to be constant. The
Simulink model mpc_cstr_plant implements the nonlinear CSTR plant. For more information on
the CSTR reactor and related examples, see “CSTR Model”.

About Adaptive Model Predictive Control

It is well known that the CSTR dynamics are strongly nonlinear with respect to reactor temperature
variations and can be open-loop unstable during the transition from one operating condition to
another. A single MPC controller designed at a particular operating condition cannot give satisfactory
control performance over a wide operating range.

To control the nonlinear CSTR plant with linear MPC control technique, you have a few options:

• If a linear plant model cannot be obtained at run time, first you need to obtain several linear plant
models offline at different operating conditions that cover the typical operating range. Next, you
can choose one of the two approaches to implement the MPC control strategy:

(1) Design several MPC controllers offline, one for each plant model. At run time, use the Multiple
MPC Controller block, which switches between controllers based on a desired scheduling strategy.
For more details, see “Gain-Scheduled MPC Control of Nonlinear Chemical Reactor” on page 8-22.
Use this approach when the plant models have different orders or time delays.

(2) Design one MPC controller offline at the initial operating point. At run time, use Adaptive MPC
Controller block (updating predictive model at each control interval) together with Linear Parameter
Varying (LPV) System block (supplying linear plant model with a scheduling strategy) as shown in this
example. Use this approach when all the plant models have the same order and time delay.

• If a linear plant model can be obtained at run time, you should use the Adaptive MPC Controller
block to achieve nonlinear control. There are two typical ways to obtain a linear plant model
online:

(1) Use successive linearization. For more details, see “Adaptive MPC Control of Nonlinear Chemical
Reactor Using Successive Linearization” on page 7-7. Use this approach when a nonlinear plant
model is available and can be linearized at run time.

(2) Use online estimation to identify a linear model when loop is closed. For more details, see
“Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation” on page 7-17.
Use this approach when a linear plant model cannot be obtained from either an LPV system or
successive linearization.

Obtain Linear Plant Model at Initial Operating Condition

First, obtain a linear plant model at the initial operating condition, where CAi is 10 kgmol/m^3, and
both Ti and Tc are 298.15 K. To generate the linear state-space system from the Simulink model, use
functions such as operspec, findop, and linearize from Simulink Control Design.

Create operating point specification.

7 Adaptive MPC Design

7-28

plant_mdl = 'mpc_cstr_plant';
op = operspec(plant_mdl);

Specify the known feed concentration at the initial condition.

op.Inputs(1).u = 10;
op.Inputs(1).Known = true;

Specify the known feed temperature at the initial condition.

op.Inputs(2).u = 298.15;
op.Inputs(2).Known = true;

Specify the known coolant temperature at the initial condition.

op.Inputs(3).u = 298.15;
op.Inputs(3).Known = true;

Compute the initial condition.

[op_point,op_report] = findop(plant_mdl,op);

 Operating point search report:

opreport =

 Operating point search report for the Model mpc_cstr_plant.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

 Min x Max dxMin dx dxMax
 ___ ______ ___ _____ ___________ _____

(1.) mpc_cstr_plant/CSTR/Integrator
 0 311.26 Inf 0 8.1176e-11 0
(2.) mpc_cstr_plant/CSTR/Integrator1
 0 8.5698 Inf 0 -6.8709e-12 0

Inputs:

 Min u Max
 ______ ______ ______

(1.) mpc_cstr_plant/CAi
 10 10 10
(2.) mpc_cstr_plant/Ti
 298.15 298.15 298.15
(3.) mpc_cstr_plant/Tc
 298.15 298.15 298.15

Outputs:

 Min y Max
 ____ ______ ___

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Linear Parameter-Varying System

7-29

(1.) mpc_cstr_plant/T
 -Inf 311.26 Inf
(2.) mpc_cstr_plant/CA
 -Inf 8.5698 Inf

Obtain nominal values of x, y, and u.

x0_initial = [op_report.States(1).x; op_report.States(2).x];
y0_initial = [op_report.Outputs(1).y; op_report.Outputs(2).y];
u0_initial = [op_report.Inputs(1).u; op_report.Inputs(2).u; op_report.Inputs(3).u];

Obtain a linear model at the initial condition.

plant_initial = linearize(plant_mdl,op_point);

Discretize the plant model.

Ts = 0.5;
plant_initial = c2d(plant_initial,Ts);

Specify signal types and names used in MPC.

plant_initial.InputGroup.UnmeasuredDisturbances = [1 2];
plant_initial.InputGroup.ManipulatedVariables = 3;
plant_initial.OutputGroup.Measured = [1 2];
plant_initial.InputName = {'CAi','Ti','Tc'};
plant_initial.OutputName = {'T','CA'};

Obtain Linear Plant Model at Intermediate Operating Condition

Create the operating point specification.

op = operspec(plant_mdl);

Specify the feed concentration.

op.Inputs(1).u = 10;
op.Inputs(1).Known = true;

Specify the feed temperature.

op.Inputs(2).u = 298.15;
op.Inputs(2).Known = true;

Specify the reactor concentration.

op.Outputs(2).y = 5.5;
op.Outputs(2).Known = true;

Find steady state operating condition.

[op_point,op_report] = findop(plant_mdl,op);

 Operating point search report:

opreport =

7 Adaptive MPC Design

7-30

 Operating point search report for the Model mpc_cstr_plant.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

 Min x Max dxMin dx dxMax
 ___ ______ ___ _____ ___________ _____

(1.) mpc_cstr_plant/CSTR/Integrator
 0 339.43 Inf 0 3.416e-08 0
(2.) mpc_cstr_plant/CSTR/Integrator1
 0 5.5 Inf 0 -2.8663e-09 0

Inputs:

 Min u Max
 ______ ______ ______

(1.) mpc_cstr_plant/CAi
 10 10 10
(2.) mpc_cstr_plant/Ti
 298.15 298.15 298.15
(3.) mpc_cstr_plant/Tc
 -Inf 298.22 Inf

Outputs:

 Min y Max
 ____ ______ ___

(1.) mpc_cstr_plant/T
 -Inf 339.43 Inf
(2.) mpc_cstr_plant/CA
 5.5 5.5 5.5

Obtain nominal values of x, y, and u.

x0_intermediate = [op_report.States(1).x; op_report.States(2).x];
y0_intermediate = [op_report.Outputs(1).y; op_report.Outputs(2).y];
u0_intermediate = [op_report.Inputs(1).u; op_report.Inputs(2).u; op_report.Inputs(3).u];

Obtain a linear model at the initial condition.

plant_intermediate = linearize(plant_mdl,op_point);

Discretize the plant model

plant_intermediate = c2d(plant_intermediate,Ts);

Specify signal types and names used in MPC.

plant_intermediate.InputGroup.UnmeasuredDisturbances = [1 2];
plant_intermediate.InputGroup.ManipulatedVariables = 3;
plant_intermediate.OutputGroup.Measured = [1 2];
plant_intermediate.InputName = {'CAi','Ti','Tc'};
plant_intermediate.OutputName = {'T','CA'};

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Linear Parameter-Varying System

7-31

Obtain Linear Plant Model at Final Operating Condition

Create the operating point specification.

op = operspec(plant_mdl);

Specify the feed concentration.

op.Inputs(1).u = 10;
op.Inputs(1).Known = true;

Specify the feed temperature.

op.Inputs(2).u = 298.15;
op.Inputs(2).Known = true;

Specify the reactor concentration.

op.Outputs(2).y = 2;
op.Outputs(2).Known = true;

Find steady-state operating condition.

[op_point,op_report] = findop(plant_mdl,op);

 Operating point search report:

opreport =

 Operating point search report for the Model mpc_cstr_plant.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

 Min x Max dxMin dx dxMax
 ___ ______ ___ _____ ___________ _____

(1.) mpc_cstr_plant/CSTR/Integrator
 0 373.13 Inf 0 5.5692e-11 0
(2.) mpc_cstr_plant/CSTR/Integrator1
 0 2 Inf 0 -4.5972e-12 0

Inputs:

 Min u Max
 ______ ______ ______

(1.) mpc_cstr_plant/CAi
 10 10 10
(2.) mpc_cstr_plant/Ti
 298.15 298.15 298.15
(3.) mpc_cstr_plant/Tc
 -Inf 305.2 Inf

Outputs:

7 Adaptive MPC Design

7-32

 Min y Max
 ____ ______ ___

(1.) mpc_cstr_plant/T
 -Inf 373.13 Inf
(2.) mpc_cstr_plant/CA
 2 2 2

Obtain nominal values of x, y, and u.

x0_final = [op_report.States(1).x; op_report.States(2).x];
y0_final = [op_report.Outputs(1).y; op_report.Outputs(2).y];
u0_final = [op_report.Inputs(1).u; op_report.Inputs(2).u; op_report.Inputs(3).u];

Obtain a linear model at the initial condition.

plant_final = linearize(plant_mdl,op_point);

Discretize the plant model

plant_final = c2d(plant_final,Ts);

Specify signal types and names used in MPC.

plant_final.InputGroup.UnmeasuredDisturbances = [1 2];
plant_final.InputGroup.ManipulatedVariables = 3;
plant_final.OutputGroup.Measured = [1 2];
plant_final.InputName = {'CAi','Ti','Tc'};
plant_final.OutputName = {'T','CA'};

Construct Linear Parameter-Varying System

Use an LTI array to store the three linear plant models.

lpv(:,:,1) = plant_initial;
lpv(:,:,2) = plant_intermediate;
lpv(:,:,3) = plant_final;

Specify reactor temperature T as the scheduling parameter.

lpv.SamplingGrid = struct('T',[y0_initial(1); y0_intermediate(1); y0_final(1)]);

Specify nominal values for plant inputs, outputs, and states at each steady-state operating point.

lpv_u0(:,:,1) = u0_initial;
lpv_u0(:,:,2) = u0_intermediate;
lpv_u0(:,:,3) = u0_final;
lpv_y0(:,:,1) = y0_initial;
lpv_y0(:,:,2) = y0_intermediate;
lpv_y0(:,:,3) = y0_final;
lpv_x0(:,:,1) = x0_initial;
lpv_x0(:,:,2) = x0_intermediate;
lpv_x0(:,:,3) = x0_final;

You do not need to provide input signal u to the LPV System block because plant output signal y is
not used in this example.

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Linear Parameter-Varying System

7-33

Design MPC Controller at Initial Operating Condition

You design an MPC controller at the initial operating condition. The controller settings such as
horizons and tuning weights should be chosen such that they apply to the whole operating range.

Create an MPC controller with default prediction and control horizons

mpcobj = mpc(plant_initial,Ts);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
 for output(s) y1 and zero weight for output(s) y2

Set nominal values in the controller. The nominal values for unmeasured disturbances must be zero.

mpcobj.Model.Nominal = struct('X',x0_initial,'U',[0;0;u0_initial(3)],'Y',y0_initial,'DX',[0 0]);

Since the plant input and output signals have different orders of magnitude, specify scaling factors.

Uscale = [10;30;50];
Yscale = [50;10];
mpcobj.DV(1).ScaleFactor = Uscale(1);
mpcobj.DV(2).ScaleFactor = Uscale(2);
mpcobj.MV.ScaleFactor = Uscale(3);
mpcobj.OV(1).ScaleFactor = Yscale(1);
mpcobj.OV(2).ScaleFactor = Yscale(2);

The goal is to track a specified transition in the reactor concentration. The reactor temperature is
measured and used in state estimation but the controller will not attempt to regulate it directly. It will
vary as needed to regulate the concentration. Thus, set its MPC weight to zero.

mpcobj.Weights.OV = [0 1];

Plant inputs 1 and 2 are unmeasured disturbances. By default, the controller assumes integrated
white noise with unit magnitude at these inputs when configuring the state estimator. Try increasing
the state estimator signal-to-noise by a factor of 10 to improve disturbance rejection performance.

Dist = ss(getindist(mpcobj));
Dist.B = eye(2)*10;
setindist(mpcobj,'model',Dist);

-->The "Model.Disturbance" property of "mpc" object is empty:
 Assuming unmeasured input disturbance #1 is integrated white noise.
 Assuming unmeasured input disturbance #2 is integrated white noise.
 Assuming no disturbance added to measured output channel #2.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Keep all other MPC parameters at their default values.

Implement Adaptive MPC Control of CSTR Plant in Simulink

Open the Simulink model.

mdl = 'ampc_cstr_lpv';
open_system(mdl)

7 Adaptive MPC Design

7-34

The model includes three parts:

1 The CSTR block implements the nonlinear plant model.
2 The Adaptive MPC Controller block runs the designed MPC controller in adaptive mode.
3 The LPV System block (Control System Toolbox) provides a local state-space plant model and its

nominal values via interpolation at each control interval. The plant model is then fed to the
Adaptive MPC Controller block and updates the predictive model used by the MPC controller. In
this example, the initial plant model is used to initialize the LPV System block.

You can use the Simulink model as a template to develop your own LPV-based adaptive MPC
applications.

Validate Adaptive MPC Control Performance

Controller performance is validated against both setpoint tracking and disturbance rejection.

• Tracking: reactor temperature T setpoint transitions from original 311 K (low conversion rate) to
377 K (high conversion rate) kgmol/m^3. During the transition, the plant first becomes unstable
then stable again (see the poles plot).

• Regulating: feed temperature Ti has slow fluctuation represented by a sine wave with amplitude
of 5 degrees, which is a measured disturbance fed to MPC controller.

Simulate the closed-loop performance.

open_system([mdl '/Concentration'])
open_system([mdl '/Temperature'])
sim(mdl)

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Linear Parameter-Varying System

7-35

 Assuming no disturbance added to measured output channel #2.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

7 Adaptive MPC Design

7-36

The tracking and regulating performance is satisfactory.

References

[1] Seborg, D. E., T. F. Edgar, and D. A. Mellichamp, Process Dynamics and Control, 2nd Edition,
Wiley, 2004.

bdclose(mdl)

See Also
Adaptive MPC Controller

More About
• “Adaptive MPC” on page 7-2
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation” on page

7-17
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive Linearization” on page

7-7

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Linear Parameter-Varying System

7-37

Obstacle Avoidance Using Adaptive Model Predictive Control
This example shows how to make a vehicle (ego car) follow a reference velocity and avoid obstacles in
the lane using adaptive MPC. To do so, you update the plant model and linear mixed input/output
constraints at run time.

Obstacle Avoidance

A vehicle with obstacle avoidance (or passing assistance) has a sensor, such as lidar, that measures
the distance to an obstacle in front of the vehicle and in the same lane. The obstacle can be static,
such as a large pot hole, or moving, such as a slow-moving vehicle. The most common maneuver from
the driver is to temporarily move to another lane, drive past the obstacle, and move back to the
original lane.

As part of the autonomous driving experience, an obstacle avoidance system can perform the
maneuver without human intervention. In this example, you design an obstacle avoidance system that
moves the ego car around a static obstacle in the lane using throttle and steering angle. This system
uses an adaptive model predictive controller that updates both the predictive model and the mixed
input/output constraints at each control interval.

Vehicle Model

The ego car has a rectangular shape with a length of 5 meters and width of 2 meters. The model has
four states:

• - Global X position of the car center
• - Global Y position of the car center
• - Heading angle of the car (0 when facing east, counterclockwise positive)
• - Speed of the car (positive)

There are two manipulated variables:

• - Throttle (positive when accelerating, negative when decelerating)
• - Steering angle (0 when aligned with car, counterclockwise positive)

Use a simple nonlinear model to describe the dynamics of the ego car:

The analytical Jacobians of nonlinear state-space model are used to construct the linear prediction
model at the nominal operating point.

where is the car length.

7 Adaptive MPC Design

7-38

Assume all the states are measurable. At the nominal operating point, the ego car drives east at a
constant speed of 20 meters per second.

V = 20;
x0 = [0; 0; 0; V];
u0 = [0; 0];

Discretize the continuous-time model using the zero-order holder method in the
obstacleVehicleModelDT function.

Ts = 0.02;
[Ad,Bd,Cd,Dd,U,Y,X,DX] = obstacleVehicleModelDT(Ts,x0,u0);
dsys = ss(Ad,Bd,Cd,Dd,'Ts',Ts);
dsys.InputName = {'Throttle','Delta'};
dsys.StateName = {'X','Y','Theta','V'};
dsys.OutputName = dsys.StateName;

Road and Obstacle Information

In this example, assume that:

• The road is straight and has three lanes.
• Each lane is four meters wide.
• The ego car drives in the middle of the center lane when not passing.
• Without losing generality, the ego car passes an obstacle only from the left (fast) lane.

lanes = 3;
laneWidth = 4;

The obstacle in this example is a nonmoving object in the middle of the center lane with the same size
as the ego car.

obstacle = struct;
obstacle.Length = 5;
obstacle.Width = 2;

Place the obstacle 50 meters down the road.

obstacle.X = 50;
obstacle.Y = 0;

Create a virtual safe zone around the obstacle so that the ego car does not get too close to the
obstacle when passing it. The safe zone is centered on the obstacle and has a:

• Length equal to two car lengths
• Width equal to two lane widths

obstacle.safeDistanceX = obstacle.Length;
obstacle.safeDistanceY = laneWidth;
obstacle = obstacleGenerateObstacleGeometryInfo(obstacle);

In this example, assume that the lidar device can detect an obstacle 30 meters in front of the vehicle.

obstacle.DetectionDistance = 30;

Plot the following at the nominal condition:

 Obstacle Avoidance Using Adaptive Model Predictive Control

7-39

• Ego car - Green dot with black boundary
• Horizontal lanes - Dashed blue lines
• Obstacle - Red x with black boundary
• Safe zone - Dashed red boundary.

f = obstaclePlotInitialCondition(x0,obstacle,laneWidth,lanes);

MPC Design at the Nominal Operating Point

Design a model predictive controller that can make the ego car maintain a desired velocity and stay
in the middle of the center lane.

status = mpcverbosity('off');
mpcobj = mpc(dsys);

The prediction horizon is 25 steps, which is equivalent to 0.5 seconds.

mpcobj.PredictionHorizon = 60;%25;
mpcobj.ControlHorizon = 2;%5;

To prevent the ego car from accelerating or decelerating too quickly, add a hard constraint of 0.2 (m/
s^2) on the throttle rate of change.

mpcobj.ManipulatedVariables(1).RateMin = -0.2*Ts;
mpcobj.ManipulatedVariables(1).RateMax = 0.2*Ts;

Similarly, add a hard constraint of 6 degrees per second on the steering angle rate of change.

7 Adaptive MPC Design

7-40

mpcobj.ManipulatedVariables(2).RateMin = -pi/30*Ts;
mpcobj.ManipulatedVariables(2).RateMax = pi/30*Ts;

Scale the throttle and steering angle by their respective operating ranges.

mpcobj.ManipulatedVariables(1).ScaleFactor = 2;
mpcobj.ManipulatedVariables(2).ScaleFactor = 0.2;

Since there are only two manipulated variables, to achieve zero steady-state offset, you can choose
only two outputs for perfect tracking. In this example, choose the Y position and velocity by setting
the weights of the other two outputs (X and theta) to zero. Doing so lets the values of these other
outputs float.

mpcobj.Weights.OutputVariables = [0 30 0 1];

Update the controller with the nominal operating condition. For a discrete-time plant:

• U = u0
• X = x0
• Y = Cd*x0 + Dd*u0
• DX = Ad*X0 + Bd*u0 - x0

mpcobj.Model.Nominal = struct('U',U,'Y',Y,'X',X,'DX',DX);

Specify Mixed I/O Constraints for Obstacle Avoidance Maneuver

There are different strategies to make the ego car avoid an obstacle on the road. For example, a real-
time path planner can compute a new path after an obstacle is detected and the controller follows
this path.

In this example, use a different approach that takes advantage of the ability of MPC to handle
constraints explicitly. When an obstacle is detected, it defines an area on the road (in terms of
constraints) that the ego car must not enter during the prediction horizon. At the next control
interval, the area is redefined based on the new positions of the ego car and obstacle until passing is
completed.

To define the area to avoid, use the following mixed input/output constraints:

E*u + F*y <= G

where u is the manipulated variable vector and y is the output variable vector. You can update the
constraint matrices E, F, and G when the controller is running.

The first constraint is an upper bound on (on this three-lane road).

E1 = [0 0];
F1 = [0 1 0 0];
G1 = laneWidth*lanes/2;

The second constraint is a lower bound on (on this three-lane road).

E2 = [0 0];
F2 = [0 -1 0 0];
G2 = laneWidth*lanes/2;

The third constraint is for obstacle avoidance. Even though no obstacle is detected at the nominal
operating condition, you must add a "fake" constraint here because you cannot change the

 Obstacle Avoidance Using Adaptive Model Predictive Control

7-41

dimensions of the constraint matrices at run time. For the fake constraint, use a constraint with the
same form as the second constraint.

E3 = [0 0];
F3 = [0 -1 0 0];
G3 = laneWidth*lanes/2;

Specify the mixed input/output constraints in the controller using the setconstraint function.

setconstraint(mpcobj,[E1;E2;E3],[F1;F2;F3],[G1;G2;G3],[1;1;0.1]);

Simulate Controller

In this example, you use an adaptive MPC controller because it handles the nonlinear vehicle
dynamics more effectively than a traditional MPC controller. A traditional MPC controller uses a
constant plant model. However, adaptive MPC allows you to provide a new plant model at each
control interval. Because the new model describes the plant dynamics more accurately at the new
operating condition, an adaptive MPC controller performs better than a traditional MPC controller.

Also, to enable the controller to avoid the safe zone surrounding the obstacle, you update the third
mixed constraint at each control interval. Basically, the ego car must be above the line formed from
the ego car to the upper left corner of the safe zone. For more details, open
obstacleComputeCustomConstraint.

Use a constant reference signal.

refSignal = [0 0 0 V];

Initialize plant and controller states.

x = x0;
u = u0;
egoStates = mpcstate(mpcobj);

The simulation time is 4 seconds.

T = 0:Ts:4;

Log simulation data for plotting.

saveSlope = zeros(length(T),1);
saveIntercept = zeros(length(T),1);
ympc = zeros(length(T),size(Cd,1));
umpc = zeros(length(T),size(Bd,2));

Run the simulation.

for k = 1:length(T)
 % Obtain new plant model and output measurements for interval |k|.
 [Ad,Bd,Cd,Dd,U,Y,X,DX] = obstacleVehicleModelDT(Ts,x,u);
 measurements = Cd * x + Dd * u;
 ympc(k,:) = measurements';

 % Determine whether the vehicle sees the obstacle, and update the mixed
 % I/O constraints when obstacle is detected.
 detection = obstacleDetect(x,obstacle,laneWidth);
 [E,F,G,saveSlope(k),saveIntercept(k)] = ...
 obstacleComputeCustomConstraint(x,detection,obstacle,laneWidth,lanes);

7 Adaptive MPC Design

7-42

 % Prepare new plant model and nominal conditions for adaptive MPC.
 newPlant = ss(Ad,Bd,Cd,Dd,'Ts',Ts);
 newNominal = struct('U',U,'Y',Y,'X',X,'DX',DX);

 % Prepare new mixed I/O constraints.
 options = mpcmoveopt;
 options.CustomConstraint = struct('E',E,'F',F,'G',G);

 % Compute optimal moves using the updated plant, nominal conditions,
 % and constraints.
 [u,Info] = mpcmoveAdaptive(mpcobj,egoStates,newPlant,newNominal,...
 measurements,refSignal,[],options);
 umpc(k,:) = u';

 % Update the plant state for the next iteration |k+1|.
 x = Ad * x + Bd * u;
end

mpcverbosity(status);

Analyze Results

Plot the trajectory of the ego car (black line) and the third mixed I/O constraints (dashed green lines)
during the obstacle avoidance maneuver.

figure(f)
for k = 1:length(saveSlope)
 X = [0;50;100];
 Y = saveSlope(k)*X + saveIntercept(k);
 line(X,Y,'LineStyle','--','Color','g')
end
plot(ympc(:,1),ympc(:,2),'-k');
axis([0 ympc(end,1) -laneWidth*lanes/2 laneWidth*lanes/2]) % reset axis

 Obstacle Avoidance Using Adaptive Model Predictive Control

7-43

The MPC controller successfully completes the task without human intervention.

Simulate Controller in Simulink

Open the Simulink model. The obstacle avoidance system contains multiple components:

• Plant Model Generator: Produce new plant model and nominal values.
• Obstacle Detector: Detect obstacle (lidar sensor not included).
• Constraint Generator: Produce new mixed I/O constraints.
• Adaptive MPC: Control obstacle avoidance maneuver.

mdl = 'mpc_ObstacleAvoidance';
open_system(mdl)
sim(mdl)

7 Adaptive MPC Design

7-44

 Obstacle Avoidance Using Adaptive Model Predictive Control

7-45

7 Adaptive MPC Design

7-46

The simulation result is identical to the command-line result. To support a rapid prototyping
workflow, you can generate C/C++ code for the blocks in the obstacle avoidance system.

bdclose(mdl)

See Also
Blocks
Adaptive MPC Controller

Functions
mpcmoveopt | mpcmoveAdaptive

 Obstacle Avoidance Using Adaptive Model Predictive Control

7-47

More About
• “Adaptive MPC” on page 7-2
• “Update Constraints at Run Time” on page 5-27
• “Automated Driving Using Model Predictive Control” on page 11-2

7 Adaptive MPC Design

7-48

Time-Varying MPC

When to Use Time-Varying MPC
To adapt to changing operating conditions, adaptive MPC supports updating the prediction model and
its associated nominal conditions at each control interval. However, the updated model and conditions
remain constant over the prediction horizon. If you can predict how the plant and nominal conditions
vary in the future, you can use time-varying MPC to specify a model that changes over the prediction
horizon. Such a linear time-varying (LTV) model is useful when controlling periodic systems or
nonlinear systems that are linearized around a time-varying nominal trajectory.

To use time-varying MPC, specify arrays for the Plant and Nominal input arguments of
mpcmoveAdaptive. For an example of time-varying MPC, see “Time-Varying MPC Control of a Time-
Varying Plant” on page 7-52.

Time-Varying Prediction Models
Consider the LTV prediction model

x k + 1 = A k x k + Bu k u k + Bv k v k
y k = C k x k + Dv k v k

where A, Bu, Bv, C, and D are discrete-time state-space matrices that can vary with time. The other
model parameters are:

• k — Current control interval time index
• x — Plant model states
• u — Manipulated variables
• v — Measured disturbance inputs
• y — Measured and unmeasured plant outputs

Since time-varying MPC extends adaptive MPC, the plant model requirements are the same; that is,
for each model in the Plant array:

• Sample time (Ts) is constant and identical to the MPC controller sample time.
• Any time delays are absorbed as discrete states.
• The input and output signal configuration remains constant.
• There is no direct feed-through from the manipulated variables to the plant outputs.

For more information, see “Plant Model” on page 7-2.

The prediction of future trajectories for p steps into the future, where p is the prediction horizon, is
the same as for the adaptive MPC case:

y 1
⋮

y p
= Sxx 0 + Su1u −1 + Su

Δu 0
⋮

Δu p− 1
+ Hv

v 0
⋮

v p

However, for an LTV prediction model, the matrices Sx, Su1, Su, and Hv are:

 Time-Varying MPC

7-49

Sx =

C 1 A 0
C 2 A 1 A 0
⋮
C p ∏i = 0

p− 1 A i

Su1 =

C 1 Bu 0
C 2 Bu 1 + A 1 Bu 0
⋮
C p ∑k = 0

p− 1 ∏i = k + 1
p− 1 A i Bu k

Su =

0 0 ⋯ 0
Su1 C 2 Bu 1 0 ⋯ 0

⋮
C p ∑k = 1

p− 1 ∏i = k + 1
p− 1 A i Bu k ⋯ ⋯ C p Bu p− 1

Hv =

C 1 Bv 0 Dv 1 0 ⋯ 0
C 2 A 1 Bv 0 C 2 Bv 1 Dv 2 ⋯ 0
⋮ ⋮ ⋮ ⋮
C p ∏i = 1

p− 1 A i Bv 0 ⋯ ⋯ C p Bv p− 1 Dv p

where ∏i = k1
k2 A i ≜ A k2 A k2− 1 …A k1 if k2 ≥ k1, or I otherwise.

For more information on the prediction matrices for implicit MPC and adaptive MPC, see “QP
Matrices” on page 2-11.

Time-Varying Nominal Conditions
Linear models are often obtained by linearizing nonlinear dynamics around time-varying nominal
trajectories. For example, consider the following LTI model, obtained by linearizing a nonlinear
system at the time-varying nominal offsets xoff, uoff, voff, and yoff:

x k + 1 − xof f k + 1 = A k x k − xof f k + Bu k u k − uof f k
+Bv k v k − vof f k + Δxof f k

y k − yof f k = C k x k − xof f k + Dv k v k − vof f k

If we define

xof f ≜ x 0 , uof f ≜ u 0
vof f ≜ v 0 , yof f ≜ y 0

as standard nominal values that remain constant over the prediction horizon, we can transform the
LTI model into the following LTV model:

x k + 1 − xof f = A k x k − xof f + Bu k u k − uof f + Bv k v k − vof f + Bv k

y k − yof f = C k x k − xof f + Dv k v k − vof f + Dv k

7 Adaptive MPC Design

7-50

where

Bv k ≜ Δxof f k + xof f k − xof f + A k xof f − xof f k + Bu k uof f − uof f k
+Bv k vof f − vof f k

Dv k ≜ yof f k − yof f + C k xof f − xof f k + Dv k vof f − vof f k

If the original linearized model is already LTV, the same transformation applies.

State Estimation
As with adaptive MPC, time-varying MPC uses a time-varying Kalman filter based on A(0), B(0), C(0),
and D(0) from the initial prediction step; that is, the current time at which the state is estimated. For
more information, see “State Estimation” on page 7-3.

See Also
mpcmoveAdaptive

More About
• “Adaptive MPC” on page 7-2
• “Optimization Problem” on page 2-7
• “Time-Varying MPC Control of a Time-Varying Plant” on page 7-52

 Time-Varying MPC

7-51

Time-Varying MPC Control of a Time-Varying Plant
This example shows how the Model Predictive Control Toolbox™ can use time-varying prediction
models to achieve better performance when controlling a time-varying plant.

The following MPC controllers are compared:

1 Linear MPC controller based on a time-invariant average model
2 Linear MPC controller based on a time-invariant model, which is updated at each time step.
3 Linear MPC controller based on a time-varying prediction model.

Time-Varying Linear Plant

In this example, the plant is a single-input-single-output 3rd order time-varying linear system with
poles, zeros and gain that vary periodically with time.

The plant poles move between being stable and unstable at run time, which leads to a challenging
control problem.

Generate an array of plant models at t = 0, 0.1, 0.2, ..., 10 seconds.

Models = tf;
ct = 1;
for t = 0:0.1:10
 Models(:,:,ct) = tf([5 5+2*cos(2.5*t)],[1 3 2 6+sin(5*t)]);
 ct = ct + 1;
end

Convert the models to state-space format and discretize them with a sample time of 0.1 second.

Ts = 0.1;
Models = ss(c2d(Models,Ts));

MPC Controller Design

The control objective is to track a step change in the reference signal. First, design an MPC controller
for the average plant model. The controller sample time is 0.1 second.

sys = ss(c2d(tf([5 5],[1 3 2 6]),Ts)); % prediction model
p = 3; % prediction horizon
m = 3; % control horizon
mpcobj = mpc(sys,Ts,p,m);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Set hard constraints on the manipulated variable and specify tuning weights.

mpcobj.MV = struct('Min',-2,'Max',2);
mpcobj.Weights = struct('MV',0,'MVRate',0.01,'Output',1);

Set the initial plant states to zero.

7 Adaptive MPC Design

7-52

x0 = zeros(size(sys.B));

Closed-Loop Simulation with Implicit MPC

Run a closed-loop simulation to examine whether the designed implicit MPC controller can achieve
the control objective without updating the plant model used in prediction.

Set the simulation duration to 5 seconds.

Tstop = 5;

Use the mpcmove command in a loop to simulate the closed-loop response.

yyMPC = [];
uuMPC = [];
x = x0;
xmpc = mpcstate(mpcobj);
fprintf('Simulating MPC controller based on average LTI model.\n');
for ct = 1:(Tstop/Ts+1)
 % Get the real plant.
 real_plant = Models(:,:,ct);
 % Update and store the plant output.
 y = real_plant.C*x;
 yyMPC = [yyMPC,y];
 % Compute and store the MPC optimal move.
 u = mpcmove(mpcobj,xmpc,y,1);
 uuMPC = [uuMPC,u];
 % Update the plant state.
 x = real_plant.A*x + real_plant.B*u;
end

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.
Simulating MPC controller based on average LTI model.

Closed-Loop Simulation with Adaptive MPC

Run a second simulation to examine whether an adaptive MPC controller can achieve the control
objective.

Use the mpcmoveAdaptive command in a loop to simulate the closed-loop response. Update the
plant model for each control interval, and use the updated model to compute the optimal control
moves. The mpcmoveAdaptive command uses the same prediction model across the prediction
horizon.

yyAMPC = [];
uuAMPC = [];
x = x0;
xmpc = mpcstate(mpcobj);
nominal = mpcobj.Model.Nominal;
fprintf('Simulating MPC controller based on LTI model, updated at each time step t.\n');
for ct = 1:(Tstop/Ts+1)
 % Get the real plant.
 real_plant = Models(:,:,ct);
 % Update and store the plant output.
 y = real_plant.C*x;
 yyAMPC = [yyAMPC, y];
 % Compute and store the MPC optimal move.

 Time-Varying MPC Control of a Time-Varying Plant

7-53

 u = mpcmoveAdaptive(mpcobj,xmpc,real_plant,nominal,y,1);
 uuAMPC = [uuAMPC,u];
 % Update the plant state.
 x = real_plant.A*x + real_plant.B*u;
end

Simulating MPC controller based on LTI model, updated at each time step t.

Closed-Loop Simulation with Time-Varying MPC

Run a third simulation to examine whether a time-varying MPC controller can achieve the control
objective.

The controller updates the prediction model at each control interval and also uses time-varying
models across the prediction horizon, which gives MPC controller the best knowledge of plant
behavior in the future.

Use the mpcmoveAdaptive command in a loop to simulate the closed-loop response. Specify an array
of plant models rather than a single model. The controller uses each model in the array at a different
prediction horizon step.

yyLTVMPC = [];
uuLTVMPC = [];
x = x0;
xmpc = mpcstate(mpcobj);
Nominals = repmat(nominal,3,1); % Nominal conditions are constant over the prediction horizon.
fprintf('Simulating MPC controller based on time-varying model, updated at each time step t.\n');
for ct = 1:(Tstop/Ts+1)
 % Get the real plant.
 real_plant = Models(:,:,ct);
 % Update and store the plant output.
 y = real_plant.C*x;
 yyLTVMPC = [yyLTVMPC, y];
 % Compute and store the MPC optimal move.
 u = mpcmoveAdaptive(mpcobj,xmpc,Models(:,:,ct:ct+p),Nominals,y,1);
 uuLTVMPC = [uuLTVMPC,u];
 % Update the plant state.
 x = real_plant.A*x + real_plant.B*u;
end

Simulating MPC controller based on time-varying model, updated at each time step t.

Performance Comparison of MPC Controllers

Compare the closed-loop responses.

t = 0:Ts:Tstop;
figure
subplot(2,1,1);
plot(t,yyMPC,'-.',t,yyAMPC,'--',t,yyLTVMPC);
grid
legend('Implicit MPC','Adaptive MPC','Time-Varying MPC','Location','SouthEast')
title('Plant Output');
subplot(2,1,2)
plot(t,uuMPC,'-.',t,uuAMPC,'--',t,uuLTVMPC)
grid
title('Control Moves');

7 Adaptive MPC Design

7-54

Only the time-varying MPC controller is able to bring the plant output close enough to the desired
setpoint.

Closed-Loop Simulation of Time-Varying MPC in Simulink

To simulate time-varying MPC control in Simulink, pass the time-varying plant models to model
inport of the Adaptive MPC Controller block.

xmpc = mpcstate(mpcobj);
mdl = 'mpc_timevarying';
open_system(mdl);

 Time-Varying MPC Control of a Time-Varying Plant

7-55

Run the simulation.

sim(mdl,Tstop);
fprintf('Simulating MPC controller based on LTV model in Simulink.\n');

Simulating MPC controller based on LTV model in Simulink.

Plot the MATLAB and Simulink time-varying simulation results.

figure
subplot(2,1,1)
plot(t,yyLTVMPC,t,ysim,'o');
grid
legend('mpcmoveAdaptive','Simulink','Location','SouthEast')
title('Plant Output');
subplot(2,1,2)
plot(t,uuLTVMPC,t,usim,'o')
grid
title('Control Moves');

7 Adaptive MPC Design

7-56

The closed-loop responses in MATLAB and Simulink are identical.

bdclose(mdl);

See Also
mpcmoveAdaptive | Adaptive MPC Controller

More About
• “Time-Varying MPC” on page 7-49

 Time-Varying MPC Control of a Time-Varying Plant

7-57

Time-Varying MPC Control of an Inverted Pendulum on a Cart
This example shows how to control an inverted pendulum on a cart using a linear time-varying model
predictive controller (LTV MPC).

Product Requirement

This example requires Simulink® software to simulate the nonlinear pendulum model.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink (R) is required to run this example.')
 return
end

Pendulum/Cart Assembly

The plant for this example is the following pendulum/cart assembly, where z is the cart position and
theta is the pendulum angle.

The manipulated variable for this system is a variable force F acting on the cart. The range of the
force is between -100 and 100. The controller needs to keep the pendulum upright while moving the
cart to a new position or when the pendulum is nudged forward by an impulse disturbance dF applied
at the upper end of the inverted pendulum.

7 Adaptive MPC Design

7-58

Control Objectives

Assume the following initial conditions for the pendulum/cart assembly:

• The cart is stationary at z = 0.

• The inverted pendulum is stationary at the upright position theta = 0.

The control objectives are:

• Cart can be moved to a new position between -20 and 20 with a step setpoint change.

• When tracking such a setpoint change, the rise time should be less than 4 seconds (for
performance) and the overshoot should be less than 10 percent (for robustness).

• When an impulse disturbance of magnitude of 4 is applied to the pendulum, the cart and
pendulum should return to its original position with small displacement.

The upright position is an unstable equilibrium for the inverted pendulum, which makes the control
task more challenging.

The Choice of Time-Varying MPC

In “Control of an Inverted Pendulum on a Cart” on page 1-132, a single MPC controller is able to
move the cart to a new position between -10 and 10. However, if you increase the step setpoint
change to 20, the pendulum fails to recover its upright position during the transition.

To reach the longer distance within the same rise time, the controller applies more force to the cart
at the beginning. As a result, the pendulum is displaced from its upright position by a larger angle,
such as 60 degrees. At such angles, the plant dynamics differ significantly from the LTI predictive
model obtained at theta = 0. As a result, errors in the prediction of plant behavior exceed what the
built-in MPC robustness can handle, and the controller fails to perform properly.

To avoid the pendulum falling, a simple workaround is to restrict pendulum displacement by adding
soft output constraints to theta and reducing the ECR weight on constraint softening.

mpcobj.OV(2).Min = -pi/2;
mpcobj.OV(2).Max = pi/2;
mpcobj.Weights.ECR = 100;

However, with these new controller settings it is no longer possible to reach the longer distance
within the required rise time. In other words, controller performance is sacrificed to avoid violation of
soft output constraints.

To move the cart to a new position between -20 and 20 while maintaining the same rise time, the
controller needs to have more accurate models at different angles so that the controller can use them
for better prediction. Adaptive MPC allows you to solve a nonlinear control problem by updating
linear time-varying plant models at run time.

Control Structure

For this example, use a single LTV MPC controller with:

• One manipulated variable: Variable force F.
• Two measured outputs: Cart position z and pendulum angle theta.

 Time-Varying MPC Control of an Inverted Pendulum on a Cart

7-59

mdlMPC = 'mpc_pendcartLTVMPC';
open_system(mdlMPC);

Because all the plant states are measurable, they are directly used as custom estimated states in the
Adaptive MPC block.

While the cart position setpoint varies (step input), the pendulum angle setpoint is constant (0 =
upright position).

Linear Time-Varying Plant Models

At each control interval, LTV MPC requires a linear plant model for each prediction step, from
current time k to time k+p, where p is the prediction horizon.

In this example, the cart and pendulum dynamic system is described by a first principle model. This
model consists of a set of differential and algebraic equations (DAEs), defined in the pendulumCT
function. For more details, see pendulumCT.m.

The Successive Linearizer block in the Simulink model generates the LTV models at run time.
At each prediction step, the block obtains state-space matrices A, B, C, and D using a Jacobian in
continuous-time, and then converts them into discrete-time values. The initial plant states x(k) are
directly measured from the plant. The plant input sequence contains the optimal moves generated by
the MPC controller in the previous control interval.

Adaptive MPC Design

The MPC controller is designed at its nominal equilibrium operating point.

x0 = zeros(4,1);
u0 = zeros(1,1);

Analytically obtain a linear plant model using the ODEs.

7 Adaptive MPC Design

7-60

[~,~,A,B,C,D] = pendulumCT(x0, u0);
plant = ss(A,B,C([1 3],:),D([1 3],:)); % position and angle

To control an unstable plant, the controller sample time cannot be too large (poor disturbance
rejection) or too small (excessive computation load). Similarly, the prediction horizon cannot be too
long (the plant unstable mode would dominate) or too short (constraint violations would be
unforeseen). Use the following parameters for this example:

Ts = 0.01;
PredictionHorizon = 60;
ControlHorizon = 3;

Create the MPC controller.

mpcobj = mpc(c2d(plant,Ts),Ts,PredictionHorizon,ControlHorizon);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
 for output(s) y1 and zero weight for output(s) y2

There is a limitation on how much force can be applied to the cart, which is specified using hard
constraints on the manipulated variable F.

mpcobj.MV.Min = -100;
mpcobj.MV.Max = 100;

It is good practice to scale plant inputs and outputs before designing weights. In this case, since the
range of the manipulated variable is greater than the range of the plant outputs by two orders of
magnitude, scale the MV input by 100.

mpcobj.MV.ScaleFactor = 100;

To improve controller robustness, increase the weight on the MV rate of change from 0.1 to 1.

mpcobj.Weights.MVRate = 1;

To achieve balanced performance, adjust the weights on the plant outputs. The first weight is
associated with cart position z, and the second weight is associated with angle theta.

mpcobj.Weights.OV = [0.6 1.2];

Use a gain as the output disturbance model for the pendulum angle. This represents rapid short-term
variability.

setoutdist(mpcobj,'model',[0;tf(1)]);

Use custom state estimation since all the plant states are measurable.

setEstimator(mpcobj,'custom');

Closed-Loop Simulation

Validate the MPC design with a closed-loop simulation in Simulink.

open_system([mdlMPC '/Scope']);
sim(mdlMPC)

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Time-Varying MPC Control of an Inverted Pendulum on a Cart

7-61

7 Adaptive MPC Design

7-62

In the nonlinear simulation, all the control objectives are successfully achieved.

bdclose(mdlMPC);

See Also
Adaptive MPC Controller

More About
• “Time-Varying MPC” on page 7-49

 Time-Varying MPC Control of an Inverted Pendulum on a Cart

7-63

Gain Scheduling MPC Design

• “Gain-Scheduled MPC” on page 8-2
• “Schedule Controllers at Multiple Operating Points” on page 8-4
• “Gain-Scheduled MPC Control of Nonlinear Chemical Reactor” on page 8-22
• “Gain-Scheduled Implicit and Explicit MPC Control of Mass-Spring System” on page 8-42
• “Gain-Scheduled MPC Control of an Inverted Pendulum on a Cart” on page 8-58

8

Gain-Scheduled MPC
Gain-scheduled model predictive control switches between a predefined set of MPC controllers, in a
coordinated fashion, to control a nonlinear plant over a wide range of operating conditions. Use this
approach if the plant operating characteristics change in a predictable way and the change is such
that a single prediction model cannot provide adequate controller performance. This approach is
comparable to the use of gain scheduling in conventional feedback control.

To improve efficiency, inactive controllers do not compute optimal control moves. However, to provide
bumpless transfer between controllers, the inactive controllers continue to perform state estimation.
Bumpless transfer prevents sudden changes in the manipulated variables when the controller
switching occurs.

You can design and simulate MPC controllers both in Simulink and at the command line. The Multiple
MPC Controllers and Multiple Explicit MPC Controllers blocks enable you to switch between a
defined set of MPC Controllers in Simulink. You can perform command-line simulations using the
mpcmoveMultiple command. However, mpcmoveMultiple does not support explicit MPC
controllers.

Design Workflow
To implement gain-scheduled MPC, first design a traditional model predictive controller for each
operating point, and then design a scheduling signal that switches controllers at run time.

General Design Steps

• Define and tune a nominal MPC controller for the most likely (or average) operating conditions.
For more information, see “MPC Design”.

• Use simulations to determine an operating condition at which the nominal controller loses
robustness. For more information, see “Simulation”.

• Identify a measurement (or combination of measurements) that indicates when to replace the
nominal controller.

• Determine a plant prediction model for the new operating conditions. Its input and output
variables must be the same as in the nominal case.

• Define a new MPC controller based on the new prediction model. Use the nominal controller
settings as a starting point, and test and retune controller settings if necessary.

• If two controllers are inadequate to provide robustness over the full operational range, consider
dividing the range into smaller regions and adding more controllers. Alternatively, you can use an
adaptive MPC controller, which has a smaller memory footprint. For more information, see
“Adaptive MPC Design”.

• (optional) Consider creating an explicit MPC controller for each traditional MPC controller.
Explicit MPC controllers require fewer run-time computations than traditional (implicit) model
predictive controllers and are therefore useful for applications that require small sample times.
For more information, see “Explicit MPC” on page 6-2.

• In your Simulink model, configure either the Multiple MPC Controllers or Multiple Explicit MPC
Controllers block, and specify the switching criterion.

• To verify robustness and bumpless switching, test the controllers over the full operating range
using closed-loop simulations.

8 Gain Scheduling MPC Design

8-2

Tips

• In practice, it is recommended to allow a warm-up period during which the plant operates under
manual control while the controller initializes its state estimates. This initialization typically
requires 10–20 control intervals. A warm-up is especially important for the Multiple MPC
Controllers and Multiple Explicit MPC Controllers blocks. Without an adequate warm-up period,
switching between controllers can cause sudden changes in the manipulated variables. Switching
on the controllers when the plant is operating far from any of the gain-scheduled operating points
can also cause sudden manipulated variable changes.

• If you use custom state estimation, all your gain-scheduled MPC controllers must have the same
state dimension. This requirement places implicit restrictions on plant and disturbance models.

See Also
Functions
mpcmoveMultiple

Blocks
Multiple MPC Controllers | Multiple Explicit MPC Controllers

More About
• “Schedule Controllers at Multiple Operating Points” on page 8-4

 Gain-Scheduled MPC

8-3

Schedule Controllers at Multiple Operating Points
If your plant is nonlinear, a controller designed to operate in a particular target region may perform
poorly in other regions. A common way to compensate is to create multiple controllers, each designed
for a particular combination of operating conditions. You can then switch between the controllers in
real time as conditions change. For more information, see “Gain-Scheduled MPC” on page 8-2.

The following example shows how to coordinate multiple model predictive controllers for this
purpose.

Plant Model

The plant contains two masses, M1 and M2, connected to two springs. A spring with spring constant
k1 pulls mass M1 to the right, and a spring with spring constant k2 pulls mass M2 to the left. The
manipulated variable is a force pulling mass M1 to the left, shown as a red arrow in the following
figure.

Both masses move freely until they collide. The collision is inelastic, and the masses stick together
until a change in the applied force separates them. Therefore, there are two operating conditions for
the system with different dynamics.

The control objective is to make the position of M1 track a reference signal, shown as a blue triangle
in the previous image. Only the position of M1 and a contact sensor are available for feedback.

Define the model parameters.

M1 = 1; % masses
M2 = 5;

8 Gain Scheduling MPC Design

8-4

k1 = 1; % spring constants
k2 = 0.1;
b1 = 0.3; % friction coefficients
b2 = 0.8;
yeq1 = 10; % wall mount positions
yeq2 = -10;

Create a state-space model for when the masses are not in contact; that is when mass M1 is moving
freely.

A1 = [0 1; -k1/M1 -b1/M1];
B1 = [0 0; -1/M1 k1*yeq1/M1];
C1 = [1 0];
D1 = [0 0];
sys1 = ss(A1,B1,C1,D1);
sys1 = setmpcsignals(sys1,'MV',1,'MD',2);

Create a state-space model for when the masses are connected.

A2 = [0 1; -(k1+k2)/(M1+M2) -(b1+b2)/(M1+M2)];
B2 = [0 0; -1/(M1+M2) (k1*yeq1+k2*yeq2)/(M1+M2)];
C2 = [1 0];
D2 = [0 0];
sys2 = ss(A2,B2,C2,D2);
sys2 = setmpcsignals(sys2,'MV',1,'MD',2);

For both models, the:

• States are the position and velocity of M1.
• Inputs are the applied force, which is the manipulated variable (MV), and a spring constant

calibration signal, which is a measured disturbance (MD).
• Output is the position of M1.

Design MPC Controllers

Design one MPC controller for each of the plant models. Both controllers are identical except for
their internal prediction models.

Define the same sample time, Ts, prediction horizon, p, and control horizon, m, for both controllers.

Ts = 0.2;
p = 20;
m = 1;

Create default MPC controllers for each plant model.

MPC1 = mpc(sys1,Ts,p,m);
MPC2 = mpc(sys2,Ts,p,m);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

 Schedule Controllers at Multiple Operating Points

8-5

Define constraints for the manipulated variable. Since the applied force cannot change direction, set
the lower bound to zero. Also, set a maximum rate of change for the input force. These constraints
are the same for both controllers.

MPC1.MV = struct('Min',0,'Max',30,'RateMin',-10,'RateMax',10);
MPC2.MV = MPC1.MV;

Simulate Gain-Scheduled Controllers

Simulate the performance of the controllers using the MPC Controller block.

Open the Simulink model.

mdl = 'mpc_switching';
open_system(mdl)

8 Gain Scheduling MPC Design

8-6

In the model, the Mass M1 subsystem simulates the motion of mass M1, both when moving freely and
when connected to M2. The Mass M2 subsystem simulates the motion of mass M2 when it is moving
freely. The mode selection and velocity reset subsystems coordinate the collision and separation of
the masses.

The model contains switching logic that detects when the positions of M1 and M2 are the same. The
resulting switching signal connects to the switch inport of the Multiple MPC Controllers block, and
controls which MPC controller is active.

Specify the initial position for each mass.

y1initial = 0;
y2initial = 10;

 Schedule Controllers at Multiple Operating Points

8-7

To specify the gain-scheduled controllers, double-click the Multiple MPC Controllers block. In the
Block Parameters dialog box, specify the controllers as a cell array of controller names. Set the initial
states for each controller to their respective nominal value by specifying the states as {'[],'[]'}.

Click OK.

Run the simulation.

sim(mdl)

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

8 Gain Scheduling MPC Design

8-8

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.
-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.
-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

To view the simulation results, open the signals scope.

open_system([mdl '/signals'])

 Schedule Controllers at Multiple Operating Points

8-9

Initially, MPC1 moves mass M1 to the reference setpoint. At about 13 seconds, M2 collides with M1. The
switching signal changes from 1 to 2, which switches control to MPC2.

8 Gain Scheduling MPC Design

8-10

The collision moves M1 away from its setpoint and MPC2 quickly returns the combined masses to the
reference point.

During the subsequent reference signal transitions, when the masses separate and collide the
Multiple MPC Controllers block switches between MPC1 and MPC2 accordingly. As a result, the
combined masses settle rapidly to the reference points.

Compare with Single MPC Controller

To demonstrate the benefit of using two MPC controllers for this application, simulate the system
using just MPC2.

Change MPC1 to match MPC2.

MPC1save = MPC1;
MPC1 = MPC2;

Run the simulation.

sim(mdl)

 Schedule Controllers at Multiple Operating Points

8-11

8 Gain Scheduling MPC Design

8-12

When the masses are not connected, MPC2 applies excessive force since it expects a larger mass. This
aggressive control action produces oscillatory behavior. Once the masses connect, the control
performance improves, since the controller is designed for this condition.

Alternatively, changing MPC2 to match MPC1 results in sluggish control actions and long settling times
when the masses are connected.

Set MPC1 back to its original configuration.

MPC1 = MPC1save;

Create Explicit MPC Controllers

To reduce online computational effort, you can create an explicit MPC controller for each operating
condition, and implement gain-scheduled explicit MPC control using the Multiple Explicit MPC
Controllers block. For more information on explicit MPC controllers, see “Explicit MPC” on page 6-2.

To create an explicit MPC controller, first define the operating ranges for the controller states, input
signals, and reference signals.

Create an explicit MPC range object using the corresponding traditional controller, MPC1.

range = generateExplicitRange(MPC1);

Specify the ranges for the controller states. Both MPC1 and MPC2 contain states for:

• The position and velocity of mass M1.
• An integrator from the default output disturbance model.

When possible, use your knowledge of the plant to define the state ranges. For example, the first
state corresponds to the position of M1, which has a range between -10 and 10.

 Schedule Controllers at Multiple Operating Points

8-13

Setting the range of a state variable can be difficult when the state does not correspond to a physical
parameter, such as for the output disturbance model state. In that case, collect range information
using simulations with typical reference and disturbance signals. For this system, you can activate
the optional est.state outport of the Multiple MPC Controllers block, and view the estimated states
using a scope. When simulating the controller responses, use a reference signal that covers the
expected operating range.

Define the state ranges for the explicit MPC controllers based on the ranges of the estimated states.

range.State.Min(:) = [-10;-8;-3];
range.State.Max(:) = [10;8;3];

Define the range for the reference signal. Select a reference range that is smaller than the M1
position range.

range.Reference.Min = -8;
range.Reference.Max = 8;

Specify the manipulated variable range using the defined MV constraints.

range.ManipulatedVariable.Min = 0;
range.ManipulatedVariable.Max = 30;

Define the range for the measured disturbance signal. Since the measured disturbance is constant,
specify a small range around the constant value, 1.

range.MeasuredDisturbance.Min = 0.9;
range.MeasuredDisturbance.Max = 1.1;

Create an explicit MPC controller that corresponds to MPC1 using the specified range object.

expMPC1 = generateExplicitMPC(MPC1,range);

Regions found / unexplored: 4/ 0

8 Gain Scheduling MPC Design

8-14

Create an explicit MPC controller that corresponds to MPC2. Since MPC1 and MPC2 operate over the
same state and input ranges, and have the same constraints, you can use the same range object.

expMPC2 = generateExplicitMPC(MPC2,range);

Regions found / unexplored: 5/ 0

In general, the explicit MPC ranges of different controllers may not match. For example, the
controllers may have different constraints or state ranges. In such cases, create a separate explicit
MPC range object for each controller.

Validate Explicit MPC Controllers

It is good practice to validate the performance of each explicit MPC controller before implementing
gain-scheduled explicit MPC. For example, to compare the performance of MPC1 and expMPC1,
simulate the closed-loop response of each controller using sim.

r = [zeros(30,1); 5*ones(160,1); -5*ones(160,1)];
[Yimp,Timp,Uimp] = sim(MPC1,350,r,1);
[Yexp,Texp,Uexp] = sim(expMPC1,350,r,1);

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Compare the plant output and manipulated variable sequences for the two controllers.

figure
subplot(2,1,1)
plot(Timp,Yimp,'b-',Texp,Yexp,'r--')
grid on
xlabel('Time (s)')
ylabel('Output')
title('Explicit MPC Validation')
legend('Implicit MPC','Explicit MPC')
subplot(2,1,2)
plot(Timp,Uimp,'b-',Texp,Uexp,'r--')
grid on
ylabel('MV')
xlabel('Time (s)')

 Schedule Controllers at Multiple Operating Points

8-15

The closed-loop responses and manipulated variable sequences of the implicit and explicit controllers
match. Similarly, you can validate the performance of expMPC2 against that of MPC2.

If the responses of the implicit and explicit controllers do not match, adjust the explicit MPC ranges,
and create a new explicit MPC controller.

Simulate Gain-Scheduled Explicit MPC

To implement gain-scheduled explicit MPC control, replace the Multiple MPC Controllers block with
the Multiple Explicit MPC Controllers block.

expModel = 'mpc_switching_explicit';
open_system(expModel)

8 Gain Scheduling MPC Design

8-16

To specify the explicit MPC controllers, double-click the Multiple Explicit MPC Controllers block. In
the Block Parameters dialog box, specify the controllers as a cell array of controller names. Set the
initial states for each controller to their respective nominal value by specifying the states as
{'[],'[]'}.

 Schedule Controllers at Multiple Operating Points

8-17

Click OK.

If you previously validated the your explicit MPC controllers, then substituting and configuring the
Multiple Explicit MPC Controllers block should produce the same results as the Multiple MPC
Controllers block.

Run the simulation.

sim(expModel)

8 Gain Scheduling MPC Design

8-18

To view the simulation results, open the signals scope.

open_system([expModel '/signals'])

 Schedule Controllers at Multiple Operating Points

8-19

The gain-scheduled explicit MPC controllers provide the same performance as the gain-scheduled
implicit MPC controllers.

8 Gain Scheduling MPC Design

8-20

bdclose('all')

See Also
Multiple MPC Controllers | Multiple Explicit MPC Controllers

More About
• “Gain-Scheduled MPC” on page 8-2
• “Gain-Scheduled Implicit and Explicit MPC Control of Mass-Spring System” on page 8-42

 Schedule Controllers at Multiple Operating Points

8-21

Gain-Scheduled MPC Control of Nonlinear Chemical Reactor
This example shows how to use multiple MPC controllers to control a nonlinear continuous stirred
tank reactor (CSTR) as it transitions from a low conversion rate to high conversion rate.

Multiple MPC controllers are designed at different operating conditions and then implemented with
the Multiple MPC Controllers block in Simulink. At run time, a scheduling signal is used to switch
between controllers.

About the Continuous Stirred Tank Reactor

A continuously stirred tank reactor (CSTR) is a common chemical system in the process industry. A
schematic of the CSTR system is:

This system is a jacketed non-adiabatic tank reactor described extensively in [1]. The vessel is
assumed to be perfectly mixed, and a single first-order exothermic and irreversible reaction, A --> B,
takes place. The inlet stream of reagent A is fed to the tank at a constant volumetric rate. The
product stream exits continuously at the same volumetric rate, and liquid density is constant. Thus,
the volume of reacting liquid is constant.

The inputs of the CSTR model are:

The outputs of the model, which are also the model states, are:

8 Gain Scheduling MPC Design

8-22

The control objective is to maintain the concentration of reagent A, at its desired setpoint, which
changes over time when the reactor transitions from a low conversion rate to a high conversion rate.
The coolant temperature is the manipulated variable used by the MPC controller to track the
reference. The inlet feed stream concentration and temperature are assumed to be constant. The
Simulink model mpc_cstr_plant implements the nonlinear CSTR plant.

About Gain-Scheduled Model Predictive Control

It is well known that the CSTR dynamics are strongly nonlinear with respect to reactor temperature
variations and can be open-loop unstable during the transition from one operating condition to
another. A single MPC controller designed at a particular operating condition cannot give satisfactory
control performance over a wide operating range.

To control the nonlinear CSTR plant with linear MPC control technique, you have a few options:

• If a linear plant model cannot be obtained at run time, first you need to obtain several linear plant
models offline at different operating conditions that cover the typical operating range. Next, you
can choose one of the two approaches to implement the MPC control strategy:

(1) Design several MPC controllers offline, one for each plant model. At run time, use the Multiple
MPC Controller block, which switches between controllers based on a desired scheduling strategy, as
discussed in this example. Use this approach when the plant models have different orders or time
delays.

(2) Design one MPC controller offline at a nominal operating point. At run time, use the Adaptive
MPC Controller block together with a linear parameter-varying system (LPV System block). The
Adaptive MPC Controller block updates the predictive model at each control interval, and the LPV
System block supplies a linear plant model based on a scheduling strategy. For more details, see
“Adaptive MPC Control of Nonlinear Chemical Reactor Using Linear Parameter-Varying System” on
page 7-27. Use this approach when all the plant models have the same order and time delay.

• If a linear plant model can be obtained at run time, you should use the Adaptive MPC Controller
block to achieve nonlinear control. There are two typical ways to obtain a linear plant model
online:

(1) Use successive linearization. For more details, see “Adaptive MPC Control of Nonlinear Chemical
Reactor Using Successive Linearization” on page 7-7. Use this approach when a nonlinear plant
model is available and can be linearized at run time.

(2) Use online estimation to identify a linear model when loop is closed. For more details, see
“Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation” on page 7-17.
Use this approach when a linear plant model cannot be obtained from either an LPV system or
successive linearization.

Obtain Linear Plant Model at Initial Operating Condition

To run this example, Simulink® and Simulink Control Design™ software are required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink is required to run this example.')
 return

 Gain-Scheduled MPC Control of Nonlinear Chemical Reactor

8-23

end
if ~mpcchecktoolboxinstalled('slcontrol')
 disp('Simulink Control Design is required to run this example.')
 return
end

First, obtain a linear plant model at the initial operating condition, where CAi is 10 kgmol/m^3, and
both Ti and Tc are 298.15 K. To generate the linear state-space system from the Simulink model, use
functions such as operspec, findop, and linearize from Simulink Control Design.

Create operating point specification.

plant_mdl = 'mpc_cstr_plant';
op = operspec(plant_mdl);

Specify the known feed concentration at the initial condition.

op.Inputs(1).u = 10;
op.Inputs(1).Known = true;

Specify the known feed temperature at the initial condition.

op.Inputs(2).u = 298.15;
op.Inputs(2).Known = true;

Specify the known coolant temperature at the initial condition.

op.Inputs(3).u = 298.15;
op.Inputs(3).Known = true;

Compute the initial condition.

[op_point,op_report] = findop(plant_mdl,op);

 Operating point search report:

opreport =

 Operating point search report for the Model mpc_cstr_plant.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

 Min x Max dxMin dx dxMax
 ___ ______ ___ _____ ___________ _____

(1.) mpc_cstr_plant/CSTR/Integrator
 0 311.26 Inf 0 8.1176e-11 0
(2.) mpc_cstr_plant/CSTR/Integrator1
 0 8.5698 Inf 0 -6.8709e-12 0

Inputs:

 Min u Max
 ______ ______ ______

8 Gain Scheduling MPC Design

8-24

(1.) mpc_cstr_plant/CAi
 10 10 10
(2.) mpc_cstr_plant/Ti
 298.15 298.15 298.15
(3.) mpc_cstr_plant/Tc
 298.15 298.15 298.15

Outputs:

 Min y Max
 ____ ______ ___

(1.) mpc_cstr_plant/T
 -Inf 311.26 Inf
(2.) mpc_cstr_plant/CA
 -Inf 8.5698 Inf

Obtain nominal values of x, y, and u.

x0 = [op_report.States(1).x; op_report.States(2).x];
y0 = [op_report.Outputs(1).y; op_report.Outputs(2).y];
u0 = [op_report.Inputs(1).u; op_report.Inputs(2).u; op_report.Inputs(3).u];

Obtain a linear model at the initial condition.

plant = linearize(plant_mdl,op_point);

Verify that the linear model is open-loop stable at this condition.

eig(plant)

ans =

 -0.5223
 -0.8952

Design MPC Controller for Initial Operating Condition

Specify signal types used in MPC. Assume both reactor temperature and concentration are
measurable.

plant.InputGroup.UnmeasuredDisturbances = [1 2];
plant.InputGroup.ManipulatedVariables = 3;
plant.OutputGroup.Measured = [1 2];
plant.InputName = {'CAi','Ti','Tc'};
plant.OutputName = {'T','CA'};

Create MPC controller with a specified sample time and default prediction and control horizons.

Ts = 0.5;
mpcobj = mpc(plant,Ts);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

 Gain-Scheduled MPC Control of Nonlinear Chemical Reactor

8-25

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
 for output(s) y1 and zero weight for output(s) y2

Set nominal values in the controller. The nominal values for unmeasured disturbances must be zero.

mpcobj.Model.Nominal = struct('X',x0,'U',[0;0;u0(3)],'Y',y0,'DX',[0 0]);

Since the plant input and output signals have different orders of magnitude, specify scaling factors.

Uscale = [10;30;50];
Yscale = [50;10];
mpcobj.DV(1).ScaleFactor = Uscale(1);
mpcobj.DV(2).ScaleFactor = Uscale(2);
mpcobj.MV.ScaleFactor = Uscale(3);
mpcobj.OV(1).ScaleFactor = Yscale(1);
mpcobj.OV(2).ScaleFactor = Yscale(2);

The goal is to track a specified transition in the reactor concentration. The reactor temperature is
measured and used in state estimation but the controller will not attempt to regulate it directly. It will
vary as needed to regulate the concentration. Thus, set its MPC weight to zero.

mpcobj.Weights.OV = [0 1];

Plant inputs 1 and 2 are unmeasured disturbances. By default, the controller assumes integrated
white noise with unit magnitude at these inputs when configuring the state estimator. Try increasing
the state estimator signal-to-noise by a factor of 10 to improve disturbance rejection performance.

Dist = ss(getindist(mpcobj));
Dist.B = eye(2)*10;
setindist(mpcobj,'model',Dist);

-->Converting model to discrete time.
-->The "Model.Disturbance" property of "mpc" object is empty:
 Assuming unmeasured input disturbance #1 is integrated white noise.
 Assuming unmeasured input disturbance #2 is integrated white noise.
 Assuming no disturbance added to measured output channel #2.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Keep all other MPC parameters at their default values.

Test the Controller With a Step Disturbance in Feed Concentration

The mpc_cstr_single Simulink model contains the CSTR plant and MPC controller in a feedback
configuration.

mpc_mdl = 'mpc_cstr_single';
open_system(mpc_mdl)

8 Gain Scheduling MPC Design

8-26

Note that the MPC Controller block is configured to look ahead at (preview) setpoint changes in the
future; that is, anticipating the setpoint transition. This generally improves setpoint tracking.

Define a constant setpoint for the output.

CSTR_Setpoints.time = [0; 60];
CSTR_Setpoints.signals.values = [y0 y0]';

Test the response to a 5% increase in feed concentration.

set_param([mpc_mdl '/Feed Concentration'],'Value','10.5');

Set plot scales and simulate the response.

open_system([mpc_mdl '/Measurements'])
open_system([mpc_mdl '/Coolant Temperature'])
set_param([mpc_mdl '/Measurements'],'Ymin','305~8','Ymax','320~9')
set_param([mpc_mdl '/Coolant Temperature'],'Ymin','295','Ymax','305')
sim(mpc_mdl,10)

-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #2.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Gain-Scheduled MPC Control of Nonlinear Chemical Reactor

8-27

8 Gain Scheduling MPC Design

8-28

The closed-loop response is satisfactory.

Simulate Designed MPC Controller Using Full Transition

First, define the desired setpoint transition. After a 10-minute warm-up period, ramp the
concentration setpoint downward at a rate of 0.25 per minute until it reaches 2.0 kmol/m^3.

CSTR_Setpoints.time = [0 10 11:39]';
CSTR_Setpoints.signals.values = [y0(1)*ones(31,1),[y0(2);y0(2);(y0(2):-0.25:2)';2;2]];

Remove the 5% increase in feed concentration used previously.

set_param([mpc_mdl '/Feed Concentration'],'Value','10')

Set plot scales and simulate the response.

set_param([mpc_mdl '/Measurements'],'Ymin','300~0','Ymax','400~10')
set_param([mpc_mdl '/Coolant Temperature'],'Ymin','240','Ymax','360')

 Gain-Scheduled MPC Control of Nonlinear Chemical Reactor

8-29

8 Gain Scheduling MPC Design

8-30

Simulate the model.

sim(mpc_mdl,60)

 Gain-Scheduled MPC Control of Nonlinear Chemical Reactor

8-31

8 Gain Scheduling MPC Design

8-32

The closed-loop response is unacceptable. Performance along the full transition can be improved if
other MPC controllers are designed at different operating conditions along the transition path. In the
next two sections, you design MPC controllers for the intermediate and final transition stages.

Design MPC Controller for Intermediate Operating Condition

Create the operating point specification.

op = operspec(plant_mdl);

Specify the feed concentration.

op.Inputs(1).u = 10;
op.Inputs(1).Known = true;

Specify the feed temperature.

op.Inputs(2).u = 298.15;
op.Inputs(2).Known = true;

Specify the reactor concentration.

op.Outputs(2).y = 5.5;
op.Outputs(2).Known = true;

Find steady state operating condition.

[op_point,op_report] = findop(plant_mdl,op);

% Obtain nominal values of |x|, |y|, and |u|.
x0 = [op_report.States(1).x; op_report.States(2).x];

 Gain-Scheduled MPC Control of Nonlinear Chemical Reactor

8-33

y0 = [op_report.Outputs(1).y; op_report.Outputs(2).y];
u0 = [op_report.Inputs(1).u; op_report.Inputs(2).u; op_report.Inputs(3).u];

 Operating point search report:

opreport =

 Operating point search report for the Model mpc_cstr_plant.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

 Min x Max dxMin dx dxMax
 ___ ______ ___ _____ ___________ _____

(1.) mpc_cstr_plant/CSTR/Integrator
 0 339.43 Inf 0 3.416e-08 0
(2.) mpc_cstr_plant/CSTR/Integrator1
 0 5.5 Inf 0 -2.8663e-09 0

Inputs:

 Min u Max
 ______ ______ ______

(1.) mpc_cstr_plant/CAi
 10 10 10
(2.) mpc_cstr_plant/Ti
 298.15 298.15 298.15
(3.) mpc_cstr_plant/Tc
 -Inf 298.22 Inf

Outputs:

 Min y Max
 ____ ______ ___

(1.) mpc_cstr_plant/T
 -Inf 339.43 Inf
(2.) mpc_cstr_plant/CA
 5.5 5.5 5.5

Obtain a linear model at the initial condition.

plant_intermediate = linearize(plant_mdl,op_point);

Verify that the linear model is open-loop unstable at this condition.

eig(plant_intermediate)

ans =

 0.4941

8 Gain Scheduling MPC Design

8-34

 -0.8357

Specify signal types used in MPC. Assume both reactor temperature and concentration are
measurable.

plant_intermediate.InputGroup.UnmeasuredDisturbances = [1 2];
plant_intermediate.InputGroup.ManipulatedVariables = 3;
plant_intermediate.OutputGroup.Measured = [1 2];
plant_intermediate.InputName = {'CAi','Ti','Tc'};
plant_intermediate.OutputName = {'T','CA'};

Create the MPC controller.

mpcobj_intermediate = mpc(plant_intermediate,Ts);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
 for output(s) y1 and zero weight for output(s) y2

Set nominal values, scaling factors, and weights in the controller.

mpcobj_intermediate.Model.Nominal = struct('X',x0,'U',[0;0;u0(3)],'Y',y0,'DX',[0 0]);
Uscale = [10;30;50];
Yscale = [50;10];
mpcobj_intermediate.DV(1).ScaleFactor = Uscale(1);
mpcobj_intermediate.DV(2).ScaleFactor = Uscale(2);
mpcobj_intermediate.MV.ScaleFactor = Uscale(3);
mpcobj_intermediate.OV(1).ScaleFactor = Yscale(1);
mpcobj_intermediate.OV(2).ScaleFactor = Yscale(2);
mpcobj_intermediate.Weights.OV = [0 1];
Dist = ss(getindist(mpcobj_intermediate));
Dist.B = eye(2)*10;
setindist(mpcobj_intermediate,'model',Dist);

-->Converting model to discrete time.
-->The "Model.Disturbance" property of "mpc" object is empty:
 Assuming unmeasured input disturbance #1 is integrated white noise.
 Assuming unmeasured input disturbance #2 is integrated white noise.
 Assuming no disturbance added to measured output channel #2.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Design MPC Controller for Final Operating Condition

Create the operating point specification.

op = operspec(plant_mdl);

Specify the feed concentration.

op.Inputs(1).u = 10;
op.Inputs(1).Known = true;

Specify the feed temperature.

 Gain-Scheduled MPC Control of Nonlinear Chemical Reactor

8-35

op.Inputs(2).u = 298.15;
op.Inputs(2).Known = true;

Specify the reactor concentration.

op.Outputs(2).y = 2;
op.Outputs(2).Known = true;

Find steady-state operating condition.

[op_point,op_report] = findop(plant_mdl,op);

% Obtain nominal values of |x|, |y|, and |u|.
x0 = [op_report.States(1).x; op_report.States(2).x];
y0 = [op_report.Outputs(1).y; op_report.Outputs(2).y];
u0 = [op_report.Inputs(1).u; op_report.Inputs(2).u; op_report.Inputs(3).u];

 Operating point search report:

opreport =

 Operating point search report for the Model mpc_cstr_plant.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

 Min x Max dxMin dx dxMax
 ___ ______ ___ _____ ___________ _____

(1.) mpc_cstr_plant/CSTR/Integrator
 0 373.13 Inf 0 5.5692e-11 0
(2.) mpc_cstr_plant/CSTR/Integrator1
 0 2 Inf 0 -4.5972e-12 0

Inputs:

 Min u Max
 ______ ______ ______

(1.) mpc_cstr_plant/CAi
 10 10 10
(2.) mpc_cstr_plant/Ti
 298.15 298.15 298.15
(3.) mpc_cstr_plant/Tc
 -Inf 305.2 Inf

Outputs:

 Min y Max
 ____ ______ ___

(1.) mpc_cstr_plant/T
 -Inf 373.13 Inf
(2.) mpc_cstr_plant/CA
 2 2 2

8 Gain Scheduling MPC Design

8-36

Obtain a linear model at the initial condition.

plant_final = linearize(plant_mdl,op_point);

Verify that the linear model is again open-loop stable at this condition.

eig(plant_final)

ans =

 -1.1077 + 1.0901i
 -1.1077 - 1.0901i

Specify signal types used in MPC. Assume both reactor temperature and concentration are
measurable.

plant_final.InputGroup.UnmeasuredDisturbances = [1 2];
plant_final.InputGroup.ManipulatedVariables = 3;
plant_final.OutputGroup.Measured = [1 2];
plant_final.InputName = {'CAi','Ti','Tc'};
plant_final.OutputName = {'T','CA'};

Create the MPC controller.

mpcobj_final = mpc(plant_final,Ts);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
 for output(s) y1 and zero weight for output(s) y2

Set nominal values, scaling factors, and weights in the controller.

mpcobj_final.Model.Nominal = struct('X',x0,'U',[0;0;u0(3)],'Y',y0,'DX',[0 0]);
Uscale = [10;30;50];
Yscale = [50;10];
mpcobj_final.DV(1).ScaleFactor = Uscale(1);
mpcobj_final.DV(2).ScaleFactor = Uscale(2);
mpcobj_final.MV.ScaleFactor = Uscale(3);
mpcobj_final.OV(1).ScaleFactor = Yscale(1);
mpcobj_final.OV(2).ScaleFactor = Yscale(2);
mpcobj_final.Weights.OV = [0 1];
Dist = ss(getindist(mpcobj_final));
Dist.B = eye(2)*10;
setindist(mpcobj_final,'model',Dist);

-->Converting model to discrete time.
-->The "Model.Disturbance" property of "mpc" object is empty:
 Assuming unmeasured input disturbance #1 is integrated white noise.
 Assuming unmeasured input disturbance #2 is integrated white noise.
 Assuming no disturbance added to measured output channel #2.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Gain-Scheduled MPC Control of Nonlinear Chemical Reactor

8-37

Control CSTR Plant Using Multiple MPC Controllers

The following model uses the Multiple MPC Controllers block to implement three MPC controllers
across the operating range.

mmpc_mdl = 'mpc_cstr_multiple';
open_system(mmpc_mdl)

The model is configured to use the three controllers in a sequence: mpcobj,
mpcobj_intermediate, and mpcobj_final.

open_system([mmpc_mdl '/Multiple MPC Controllers'])

Also, the two switches specify when to switch from one controller to another. The rules are:

1 If CSTR concentration >= 8, use mpcobj.
2 If 3 <= CSTR concentration < 8, use mpcobj_intermediate.
3 If CSTR concentration < 3, use mpcobj_final.

Simulate using the Multiple MPC Controllers block.

open_system([mmpc_mdl '/Measurements'])
open_system([mmpc_mdl '/MV'])
sim(mmpc_mdl)

-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #2.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.
-->Converting model to discrete time.

8 Gain Scheduling MPC Design

8-38

 Assuming no disturbance added to measured output channel #2.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Gain-Scheduled MPC Control of Nonlinear Chemical Reactor

8-39

The transition is now well-controlled. The major improvement is in the transition through the open-
loop unstable region. The plot of the switching signal shows when controller transitions occur. The
MV character changes at these times because of the change in dynamic characteristics introduced by
the new prediction model.

References

[1] Seborg, D. E., T. F. Edgar, and D. A. Mellichamp, Process Dynamics and Control, 2nd Edition,
Wiley, 2004.

bdclose(plant_mdl)
bdclose(mpc_mdl)
bdclose(mmpc_mdl)

See Also
MPC Controller | Multiple MPC Controllers

8 Gain Scheduling MPC Design

8-40

More About
• “Gain-Scheduled MPC” on page 8-2
• “Schedule Controllers at Multiple Operating Points” on page 8-4
• “Gain-Scheduled Implicit and Explicit MPC Control of Mass-Spring System” on page 8-42

 Gain-Scheduled MPC Control of Nonlinear Chemical Reactor

8-41

Gain-Scheduled Implicit and Explicit MPC Control of Mass-
Spring System

This example shows how to use an Multiple MPC Controllers block and an Multiple Explicit MPC
Controllers block to implement gain scheduled MPC control of a nonlinear plant.

System Description

The system is composed by two masses M1 and M2 connected to two springs k1 and k2 respectively.
The collision is assumed completely inelastic. Mass M1 is pulled by a force F, which is the
manipulated variable. The objective is to make mass M1's position y1 track a given reference r.

The dynamics are twofold: when the masses are detached, M1 moves freely. Otherwise, M1 and M2
move together. We assume that only M1 position and a contact sensor are available for feedback. The
latter is used to trigger switching the MPC controllers. Note that the position and velocity of mass M2
are not controllable.

 /-----\ k1 ||
 F <--- | M1 |----/\/\/\-------------[|| wall
 || | |---/ ||
 || k2 \-/ /----\ ||
wall||]--/\/\/\-------------------| M2 | ||
 || \----/ ||
 || ||
----yeq2------------------ y1 ------ y2 ----------------yeq1----> y axis

The model is a simplified version of the model proposed in [1].

Model Parameters

M1 = 1; % mass
M2 = 5; % mass
k1 = 1; % spring constant
k2 = 0.1; % spring constant
b1 = 0.3; % friction coefficient
b2 = 0.8; % friction coefficient
yeq1 = 10; % wall mount position
yeq2 = -10; % wall mount position

Plant Models

The state-space plant models for this examples have the following input and output signals:

• States: Position and velocity of mass M1
• Manipulated variable: Pulling force F
• Measured disturbance: Constant value of 1 which calibrates the spring force to the correct value
• Measured output: Position of mass M1

Define the state-space model of M1 when the masses are not in contact.

A1 = [0 1;-k1/M1 -b1/M1];
B1 = [0 0;-1/M1 k1*yeq1/M1];
C1 = [1 0];
D1 = [0 0];

8 Gain Scheduling MPC Design

8-42

sys1 = ss(A1,B1,C1,D1);
sys1 = setmpcsignals(sys1,'MD',2);

-->Assuming unspecified input signals are manipulated variables.

Define the state-space model when the two masses are in contact.

A2 = [0 1;-(k1+k2)/(M1+M2) -(b1+b2)/(M1+M2)];
B2 = [0 0;-1/(M1+M2) (k1*yeq1+k2*yeq2)/(M1+M2)];
C2 = [1 0];
D2 = [0 0];
sys2 = ss(A2,B2,C2,D2);
sys2 = setmpcsignals(sys2,'MD',2);

-->Assuming unspecified input signals are manipulated variables.

Design MPC Controllers

Specify the controller sample time Ts, prediction horizon p, and control horizon m.

Ts = 0.2;
p = 20;
m = 1;

Design the first MPC controller for the case when mass M1 detaches from M2.

MPC1 = mpc(sys1,Ts,p,m);
MPC1.Weights.OV = 1;

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Specify constraints on the manipulated variable.

MPC1.MV = struct('Min',0,'Max',30,'RateMin',-10,'RateMax',10);

Design the second MPC controller for the case when masses M1 and M2 are together.

MPC2 = mpc(sys2,Ts,p,m);
MPC2.Weights.OV = 1;

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Specify constraints on the manipulated variable.

MPC2.MV = struct('Min',0,'Max',30,'RateMin',-10,'RateMax',10);

Simulate Gain Scheduled MPC in Simulink®

Simulate gain-scheduled MPC control using the Multiple MPC Controllers block, which switches
between MPC1 and MPC2.

% To run this example, Simulink(R) is required.
if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink is required to run this example.')
 return
end

 Gain-Scheduled Implicit and Explicit MPC Control of Mass-Spring System

8-43

Open and configure the model.

y1initial = 0; % Initial position of M1
y2initial = 10; % Initial position of M2
mdl = 'mpc_switching';
open_system(mdl)
if exist('animationmpc_switchoff','var') && animationmpc_switchoff
 close_system([mdl '/Animation'])
 clear animationmpc_switchoff
end

Simulate the model.

8 Gain Scheduling MPC Design

8-44

open_system([mdl '/signals'])
sim(mdl)
MPC1saved = MPC1;
MPC2saved = MPC2;

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.
-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.
-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Gain-Scheduled Implicit and Explicit MPC Control of Mass-Spring System

8-45

8 Gain Scheduling MPC Design

8-46

Using two controllers provides satisfactory performance under all conditions.

Repeat Simulation Using MPC1 Only

Repeat the simulation assuming that the masses are never in contact; that is, using only controller
MPC1.

MPC1 = MPC1saved;
MPC2 = MPC1saved;
sim(mdl)

 Gain-Scheduled Implicit and Explicit MPC Control of Mass-Spring System

8-47

8 Gain Scheduling MPC Design

8-48

In this case, performance degrades whenever the two masses join.

Repeat Simulation Using MPC2 Only

Repeat the simulation assuming that the masses are always in contact; that is, using only controller
MPC2.

MPC1 = MPC2saved;
MPC2 = MPC2saved;
sim(mdl)

 Gain-Scheduled Implicit and Explicit MPC Control of Mass-Spring System

8-49

8 Gain Scheduling MPC Design

8-50

In this case, performance degrades when the masses separate, causing the controller to apply
excessive force.

bdclose(mdl);
close(findobj('Tag','mpc_switching_demo'));

Design Explicit MPC Controllers

To reduce online computational effort, you can create an explicit MPC controller for each operating
condition, and implement gain-scheduled explicit MPC control using the Multiple Explicit MPC
Controllers block.

To create an explicit MPC controller, first define the operating ranges for the controller states, input
signals, and reference signals. Create an explicit MPC range object using the corresponding
traditional controller, MPC1.

range = generateExplicitRange(MPC1saved);

Specify the ranges for the controller states. Both MPC1 and MPC2 contain states for:

• The position and velocity of mass M1
• An integrator from the default output disturbance model

range.State.Min(:) = [-10;-8;-3];
range.State.Max(:) = [10;8;3];

When possible, use your knowledge of the plant to define the state ranges. However, it can be difficult
when the state does not correspond to a physical parameter, such as for the output disturbance model
state. In that case, collect range information using simulations with typical reference and disturbance
signals. For this system, you can activate the optional est.state outport of the Multiple MPC
Controllers block, and view the estimated states using a scope. When simulating the controller
responses, use a reference signal that covers the expected operating range.

 Gain-Scheduled Implicit and Explicit MPC Control of Mass-Spring System

8-51

Define the range for the reference signal. Select a reference range that is smaller than the M1
position range.

range.Reference.Min = -8;
range.Reference.Max = 8;

Specify the manipulated variable range using the defined MV constraints.

range.ManipulatedVariable.Min = 0;
range.ManipulatedVariable.Max = 30;

Define the range for the measured disturbance signal. Since the measured disturbance is constant,
specify a small range around the constant value, 1.

range.MeasuredDisturbance.Min = 0.9;
range.MeasuredDisturbance.Max = 1.1;

Create an explicit MPC controller that corresponds to MPC1 using the specified range object.

expMPC1 = generateExplicitMPC(MPC1saved,range);

Regions found / unexplored: 4/ 0

Create an explicit MPC controller that corresponds to MPC2. Since MPC1 and MPC2 operate over the
same state and input ranges, and have the same constraints, you can use the same range object.

expMPC2 = generateExplicitMPC(MPC2saved,range);

Regions found / unexplored: 5/ 0

In general, the explicit MPC ranges of different controllers may not match. For example, the
controllers may have different constraints or state ranges. In such cases, create a separate explicit
MPC range object for each controller.

Validate Explicit MPC Controllers

It is good practice to validate the performance of each explicit MPC controller before implementing
gain-scheduled explicit MPC. For example, to compare the performance of MPC1 and expMPC1,
simulate the closed-loop response of each controller using sim.

r = [zeros(30,1); 5*ones(160,1); -5*ones(160,1)];
[Yimp,Timp,Uimp] = sim(MPC1saved,350,r,1);
[Yexp,Texp,Uexp] = sim(expMPC1,350,r,1);

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Compare the plant output and manipulated variable sequences for the two controllers.

figure
subplot(2,1,1)
plot(Timp,Yimp,'b-',Texp,Yexp,'r--')

8 Gain Scheduling MPC Design

8-52

grid on
xlabel('Time (s)')
ylabel('Output')
title('Explicit MPC Validation')
legend('Implicit MPC','Explicit MPC')
subplot(2,1,2)
plot(Timp,Uimp,'b-',Texp,Uexp,'r--')
grid on
ylabel('MV')
xlabel('Time (s)')

The closed-loop responses and manipulated variable sequences of the implicit and explicit controllers
match. Similarly, you can validate the performance of expMPC2 against that of MPC2.

If the responses of the implicit and explicit controllers do not match, adjust the explicit MPC ranges,
and create a new explicit MPC controller.

Simulate Gain-Scheduled Explicit MPC

To implement gain-scheduled explicit MPC control, replace the Multiple MPC Controllers block with
the Multiple Explicit MPC Controllers block.

expModel = 'mpc_switching_explicit';
open_system(expModel)

 Gain-Scheduled Implicit and Explicit MPC Control of Mass-Spring System

8-53

Run the simulation.

sim(expModel)

8 Gain Scheduling MPC Design

8-54

To view the simulation results, open the signals scope.

open_system([expModel '/signals'])

 Gain-Scheduled Implicit and Explicit MPC Control of Mass-Spring System

8-55

The gain-scheduled explicit MPC controllers provide the same performance as the gain-scheduled
implicit MPC controllers.

8 Gain Scheduling MPC Design

8-56

References

[1] A. Bemporad, S. Di Cairano, I. V. Kolmanovsky, and D. Hrovat, "Hybrid modeling and control of a
multibody magnetic actuator for automotive applications," in Proc. 46th IEEE® Conf. on Decision and
Control, New Orleans, LA, 2007.

bdclose(expModel)
close(findobj('Tag','mpc_switching_demo'))

See Also
Multiple MPC Controllers | Multiple Explicit MPC Controllers

More About
• “Gain-Scheduled MPC” on page 8-2
• “Schedule Controllers at Multiple Operating Points” on page 8-4
• “Gain-Scheduled MPC Control of Nonlinear Chemical Reactor” on page 8-22

 Gain-Scheduled Implicit and Explicit MPC Control of Mass-Spring System

8-57

Gain-Scheduled MPC Control of an Inverted Pendulum on a
Cart

This example uses a gain-scheduled model predictive controller to control an inverted pendulum on a
cart.

Product Requirement

This example requires Simulink® Control Design™ software to define the MPC structure by
linearizing a nonlinear Simulink model.

if ~mpcchecktoolboxinstalled('slcontrol')
 disp('Simulink Control Design is required to run this example.')
 return
end

Pendulum/Cart Assembly

The plant for this example is the following cart/pendulum assembly, where x is the cart position and
theta is the pendulum angle.

This system is controlled by exerting a variable force F on the cart. The controller needs to keep the
pendulum upright while moving the cart to a new position or when the pendulum is nudged forward
by an impulse disturbance dF applied at the upper end of the inverted pendulum.

8 Gain Scheduling MPC Design

8-58

This plant is modeled in Simulink with commonly used blocks.

mdlPlant = 'mpc_pendcartPlant';
load_system(mdlPlant)
open_system([mdlPlant '/Pendulum and Cart System'],'force')

Control Objectives

Assume the following initial conditions for the cart/pendulum assembly:

• The cart is stationary at x = 0.

• The inverted pendulum is stationary at the upright position theta = 0.

The control objectives are:

• Cart can be moved to a new position between -15 and 15 with a step setpoint change.

• When tracking such a setpoint change, the rise time should be less than 4 seconds (for
performance) and the overshoot should be less than 5 percent (for robustness).

• When an impulse disturbance of magnitude of 2 is applied to the pendulum, the cart should return
to its original position with a maximum displacement of 1. The pendulum should also return to the
upright position with a peak angle displacement of 15 degrees (0.26 radian).

The upright position is an unstable equilibrium for the inverted pendulum, which makes the control
task more challenging.

 Gain-Scheduled MPC Control of an Inverted Pendulum on a Cart

8-59

The Choice of Gain-Scheduled MPC

In “Control of an Inverted Pendulum on a Cart” on page 1-132, a single MPC controller is able to
move the cart to a new position between -10 and 10. However, if you increase the step setpoint
change to 15, the pendulum fails to recover its upright position during the transition.

To reach the longer distance within the same rise time, the controller applies more force to the cart
at the beginning. As a result, the pendulum is displaced from its upright position by a larger angle
such as 60 degrees. At such angles, the plant dynamics differ significantly from the LTI predictive
model obtained at theta = 0. As a result, errors in the prediction of plant behavior exceed what the
built-in MPC robustness can handle, and the controller fails to perform properly.

A simple workaround to avoid the pendulum falling is to restrict pendulum displacement by adding
soft output constraints to theta and reducing the ECR weight on constraint softening.

mpcobj.OV(2).Min = -pi/2;
mpcobj.OV(2).Max = pi/2;
mpcobj.Weights.ECR = 100;

However, with these new controller settings it is no longer possible to reach the longer distance
within the required rise time. In other words, controller performance is sacrificed to avoid violation of
soft output constraints.

To move the cart to a new position between -15 and 15 while maintaining the same rise time, the
controller needs to have more accurate models at different angles so that the controller can use them
for better prediction. Gain-scheduled MPC allows you to solve a nonlinear control problem by
designing multiple MPC controllers at different operating points and switching between them at run
time.

Control Structure

For this example, use a single MPC controller with:

• One manipulated variable: Variable force F.
• Two measured outputs: Cart position x and pendulum angle theta.
• One unmeasured disturbance: Impulse disturbance dF.

mdlMPC = 'mpc_pendcartGSMPC';
open_system(mdlMPC)

8 Gain Scheduling MPC Design

8-60

Although cart velocity x_dot and pendulum angular velocity theta_dot are available from the plant
model, to make the design case more realistic, they are excluded as MPC measurements.

While the cart position setpoint varies (step input), the pendulum angle setpoint is constant (0 =
upright position).

Linear Plant Model

Since the MPC controller requires a linear time-invariant (LTI) plant model for prediction, linearize
the Simulink plant model at three different operating points.

Specify linearization input and output points

io(1) = linio([mdlPlant '/dF'],1,'openinput');
io(2) = linio([mdlPlant '/F'],1,'openinput');
io(3) = linio([mdlPlant '/Pendulum and Cart System'],1,'openoutput');
io(4) = linio([mdlPlant '/Pendulum and Cart System'],3,'openoutput');

Create specifications for the following three operating points, where both cart and pendulum are
stationary:

• Pendulum is at 80 degrees, pointing right (theta = -4*pi/9)
• Pendulum is upright (theta = 0)
• Pendulum is at 80 degrees, pointing left (theta = 4*pi/9)

angles = [-4*pi/9 0 4*pi/9];
for ct=1:length(angles)

Create operating point specification.

 opspec(ct) = operspec(mdlPlant);

The first state is cart position x.

 Gain-Scheduled MPC Control of an Inverted Pendulum on a Cart

8-61

 opspec(ct).States(1).Known = true;
 opspec(ct).States(1).x = 0;

The second state is cart velocity x_dot (not at steady state).

 opspec(ct).States(2).SteadyState = false;

The third state is pendulum angle theta.

 opspec(ct).States(3).Known = true;
 opspec(ct).States(3).x = angles(ct);

The fourth state is angular velocity theta_dot (not at steady state).

 opspec(ct).States(4).SteadyState = false;

end

Compute operating points using these specifications.

options = findopOptions('DisplayReport',false);
[op,opresult] = findop(mdlPlant,opspec,options);

Obtain the linear plant model at the specified operating points.

plants = linearize(mdlPlant,op,io);

bdclose(mdlPlant)

Multiple MPC Designs

At each operating point, design an MPC controller with the corresponding linear plant model.

status = mpcverbosity('off');
for ct=1:length(angles)

Get a single plant model.

 plant = plants(:,:,ct);
 plant.InputName = {'dF'; 'F'};
 plant.OutputName = {'x'; 'theta'};

The plant has two inputs, dF and F, and two outputs, x and theta. In this example, dF is specified as
an unmeasured disturbance used by the MPC controller for prediction. Set the plant signal types.

 plant = setmpcsignals(plant,'ud',1,'mv',2);

To control an unstable plant, the controller sample time cannot be too large (poor disturbance
rejection) or too small (excessive computation load). Similarly, the prediction horizon cannot be too
long (the plant unstable mode would dominate) or too short (constraint violations would be
unforeseen). Use the following parameters for this example:

 Ts = 0.01;
 PredictionHorizon = 50;
 ControlHorizon = 5;
 mpcobj = mpc(plant,Ts,PredictionHorizon,ControlHorizon);

Specify nominal input and output values based on the operating point.

8 Gain Scheduling MPC Design

8-62

 mpcobj.Model.Nominal.Y = [0;opresult(ct).States(3).x];
 mpcobj.Model.Nominal.X = [0;0;opresult(ct).States(3).x;0];
 mpcobj.Model.Nominal.DX = [0;opresult(ct).States(2).dx;0;opresult(ct).States(4).dx];

There is a limitation on how much force we can apply to the cart, which is specified as hard
constraints on manipulated variable F.

 mpcobj.MV.Min = -200;
 mpcobj.MV.Max = 200;

It is good practice to scale plant inputs and outputs before designing weights. In this case, since the
range of the manipulated variable is greater than the range of the plant outputs by two orders of
magnitude, scale the MV input by 100.

 mpcobj.MV.ScaleFactor = 100;

To improve controller robustness, increase the weight on the MV rate of change from 0.1 to 1.

 mpcobj.Weights.MVRate = 1;

To achieve balanced performance, adjust the weights on the plant outputs. The first weight is
associated with cart position x and the second weight is associated with angle theta.

 mpcobj.Weights.OV = [1.2 1];

To achieve more aggressive disturbance rejection, increase the state estimator gain by multiplying
the default disturbance model gains by a factor of 10.

Update the input disturbance model.

 disturbance_model = getindist(mpcobj);
 setindist(mpcobj,'model',disturbance_model*10);

Update the output disturbance model.

 disturbance_model = getoutdist(mpcobj);
 setoutdist(mpcobj,'model',disturbance_model*10);

Save the MPC controller to the MATLAB workspace.

 assignin('base',['mpc' num2str(ct)],mpcobj);

end
mpcverbosity(status);

Closed-Loop Simulation

Validate the MPC design with a closed-loop simulation in Simulink.

open_system([mdlMPC '/Scope'])
sim(mdlMPC)

-->Converting model to discrete time.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.
-->Converting model to discrete time.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.
-->Converting model to discrete time.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Gain-Scheduled MPC Control of an Inverted Pendulum on a Cart

8-63

-->Converting model to discrete time.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

8 Gain Scheduling MPC Design

8-64

In the nonlinear simulation, all the control objectives are successfully achieved.

Close Simulink model.

bdclose(mdlMPC)

See Also
Multiple MPC Controllers

More About
• “Gain-Scheduled MPC” on page 8-2
• “Control of an Inverted Pendulum on a Cart” on page 1-132
• “Explicit MPC Control of an Inverted Pendulum on a Cart” on page 6-33

 Gain-Scheduled MPC Control of an Inverted Pendulum on a Cart

8-65

Nonlinear MPC

• “Nonlinear MPC” on page 9-2
• “Specify Prediction Model for Nonlinear MPC” on page 9-5
• “Specify Cost Function for Nonlinear MPC” on page 9-12
• “Specify Constraints for Nonlinear MPC” on page 9-19
• “Configure Optimization Solver for Nonlinear MPC” on page 9-27
• “Trajectory Optimization and Control of Flying Robot Using Nonlinear MPC” on page 9-32
• “Generate Code to Plan and Execute Collision-Free Trajectories using KINOVA Gen3 Manipulator”

on page 9-43
• “Swing-up Control of a Pendulum Using Nonlinear Model Predictive Control” on page 9-49
• “Nonlinear Model Predictive Control of an Exothermic Chemical Reactor” on page 9-61
• “Optimizing Tuberculosis Treatment Using Nonlinear MPC with a Custom Solver” on page 9-68
• “Nonlinear and Gain-Scheduled MPC Control of an Ethylene Oxidation Plant” on page 9-76
• “Optimization and Control of a Fed-Batch Reactor Using Nonlinear MPC” on page 9-84
• “Lane Following Using Nonlinear Model Predictive Control” on page 9-94
• “Lane Change Assist Using Nonlinear Model Predictive Control” on page 9-101
• “Control of Quadrotor Using Nonlinear Model Predictive Control” on page 9-111
• “Economic MPC” on page 9-117
• “Economic MPC Control of Ethylene Oxide Production” on page 9-119
• “Truck and Trailer Automatic Parking Using Multistage Nonlinear MPC” on page 9-127
• “Land a Rocket Using Multistage Nonlinear MPC” on page 9-141

9

Nonlinear MPC
As in traditional linear MPC, nonlinear MPC calculates control actions at each control interval using a
combination of model-based prediction and constrained optimization. The key differences are:

• The prediction model can be nonlinear and include time-varying parameters.
• The equality and inequality constraints can be nonlinear.
• The scalar cost function to be minimized can be a nonquadratic (linear or nonlinear) function of

the decision variables.

Using nonlinear MPC, you can:

• Simulate closed-loop control of nonlinear plants under nonlinear costs and constraints.
• Plan optimal trajectories by solving an open-loop constrained nonlinear optimization problem.

By default, nonlinear MPC controllers solve a nonlinear programming problem using the fmincon
function with the SQP algorithm, which requires Optimization Toolbox™ software. If you do not have
Optimization Toolbox software, you can specify your own custom nonlinear solver. For more
information on configuring the fmincon solver and specifying a custom solver, see “Configure
Optimization Solver for Nonlinear MPC” on page 9-27. For more information about using the
FORCESPRO NLP solver with nonlinear MPC controllers, see “Implement MPC Controllers using
Embotech FORCESPRO Solvers” on page 10-67.

Note The MPC Designer app does not support the design of nonlinear MPC controllers.

Generic Nonlinear MPC
To implement generic nonlinear MPC, create an nlmpc object, and specify:

• State and output functions that define your prediction model. For more information, see “Specify
Prediction Model for Nonlinear MPC” on page 9-5.

• A custom cost function that can replace or augment the standard MPC cost function. For more
information, see “Specify Cost Function for Nonlinear MPC” on page 9-12.

• Standard bounds on inputs, outputs, and states.
• Additional custom equality and inequality constraints, which can include linear and nonlinear

combinations of inputs, outputs, and states. For more information, see “Specify Constraints for
Nonlinear MPC” on page 9-19.

You can simulate generic nonlinear MPC controllers:

• In Simulink using the Nonlinear MPC Controller block
• At the command line using nlmpcmove

Multistage Nonlinear MPC
A multistage MPC problem is an MPC problem in which cost and constraint functions are stage-
based. Specifically, a multistage MPC controller with a prediction horizon of length p has p+1 stages,
where the first stage corresponds to the current time and the last (terminal) stage corresponds to the
last prediction step.

9 Nonlinear MPC

9-2

https://www.embotech.com/forces-pro/

For a multistage MPC controller, each stage can have its own decision variables and parameters, as
well as its own nonlinear cost and constraints. More importantly, cost and constraint functions at a
specific stage are functions only of the decision variables and parameters at that stage. Other than
make it easier to write Jacobian functions, this feature allows for a much more efficient data
structure, which in turn significantly reduces computation times compared to the same problem
solved using a generic NLMPC controller. The fact that slack variables are stage-based allows for
more design flexibility, and disabling the use of manipulated variable rates as decision variables
yields an even leaner problem formulation.

For these reason, if your nonlinear MPC problem has cost and constraint functions that do not involve
cross-stage terms, use multistage nonlinear MPC controller in your design.

To implement a multistage nonlinear MPC controller, first create an nlmpcMultistage object, and
then specify:

• State functions that define your prediction model. For discrete-time models, make sure
Model.IsContinuousTime is set to false.

• Cost and constraint functions at the desired stages. You must specify the cost function for at least
one stage.

• Hard upper and lower bounds on states, manipulated variables, and manipulated variable rates, if
needed.

When designing your controller, consider the following points.

• Anonymous functions are not supported for nlmpcMultistage objects.
• Specifying Jacobians when they are available is the best practice, otherwise the solver must

compute them numerically at each step.
• Unlike in generic nonlinear MPC, plant outputs, weights, ECR values, and scale factors are not

present in an nlmpcMultistage object. You can implement them directly in your cost and
constraint functions.

• The control horizon is also omitted in nlmpcMultistage objects. To implement block moves, set
RateMin and RateMax to zero at desired prediction steps.

You can simulate multistage nonlinear MPC controllers:

• In Simulink using the Multistage Nonlinear MPC Controller block
• At the MATLAB command line using nlmpcmove

Code generation from a nonlinear multistage controller is supported in both MATLAB (using
mpcmoveCodeGeneration) and Simulink.

For examples on how to create and use a multistage MPC controller, see “Create and Simulate
Multistage Nonlinear MPC Controller”, “Simulate Multistage Nonlinear MPC Controller Using Initial
Guesses”, and “Truck and Trailer Automatic Parking Using Multistage Nonlinear MPC” on page 9-
127.

See Also
Functions
nlmpc | nlmpcMultistage | nlmpcmove

 Nonlinear MPC

9-3

Blocks
Nonlinear MPC Controller | Multistage Nonlinear MPC Controller

More About
• “Trajectory Optimization and Control of Flying Robot Using Nonlinear MPC” on page 9-32
• “Economic MPC” on page 9-117

9 Nonlinear MPC

9-4

Specify Prediction Model for Nonlinear MPC
The prediction model of a nonlinear MPC controller consists of the following user-defined functions:

• State function — Predicts how the plant states evolve over time
• Output function — Calculates plant outputs in terms of state and input variables

You can specify either a continuous-time or a discrete-time prediction model.

Before simulating your controller, it is best practice to validate your custom functions, including the
state function, output function, and their Jacobians using the validateFcns command.

State Function
You can specify either a continuous-time or a discrete-time state function. For a:

• Continuous-time prediction model, the state function is the state derivative function.

dx/dt = f x, u
• Discrete-time prediction model, the state function is the state update function.

x k + 1 = f x k , u k

Since a nonlinear MPC controller is a discrete-time controller, if your state function is continuous-
time, the controller automatically discretizes the model using the implicit trapezoidal rule. This
method can handle moderately stiff models, and its prediction accuracy depends on the controller
sample time; that is, a large sample time can potentially lead to inaccurate prediction.

If the default discretization method does not provide satisfactory prediction for your application, you
can specify your own discrete-time prediction model that uses a different method. To do so, you can
integrate a continuous-time state function from the given initial condition, xk, to the next state, xk+1.
When doing so numerically, avoid approaches that require iterations, such as some variable-step-size
methods, because these methods introduce numerical noise that degrades solver performance. An
explicit multistep Euler method with sufficiently small step size is often the best method to try first.
For an example, see “Swing-up Control of a Pendulum Using Nonlinear Model Predictive Control” on
page 9-49.

You can specify your state function in one of the following ways.

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Model.StateFcn = "myStateFunction";

• Handle to a function in the current working folder or on the MATLAB path

Model.StateFcn = @myStateFunction;

• Anonymous function

Model.StateFcn = @(x,u,params) myStateFunction(x,u,params)

Your state function must have one of the following signatures.

• If your controller does not use optional parameters:

 Specify Prediction Model for Nonlinear MPC

9-5

function z = myStateFunction(x,u)

• If your controller uses parameters. Here, params is a comma-separated list of parameters:

function z = myStateFunction(x,u,params)

This table describes the inputs and outputs of this function, where:

• Nx is the number of states and is equal to the Dimensions.NumberOfStates property of the
controller.

• Nu is the number of inputs, including all manipulated variables, measured disturbances, and
unmeasured disturbances, and is equal to the Dimensions.NumberOfInputs property of the
controller.

Argument Input/Output Description
x Input Current states, specified as a column vector of length Nx.
u Input Current inputs, specified as a column vector of length Nu.
params Input Optional parameters, specified as a comma-separated list (for

example p1,p2,p3). The same parameters are passed to the
prediction model, custom cost function, and custom constraint
functions of the controller.

If your model uses optional parameters, you must specify the
number of parameters using the Model.NumberOfParameters
property of the controller.

z Output State function output, returned as a column vector of length Nx.
For a continuous-time prediction model, z contains the state
derivatives, dx/dt, and for discrete-time prediction models, z
contains the next states, x(k+1).

As an example of a state function, consider the continuous-time model with the following state
equations:

ẋ1 = x4

ẋ2 = x5

ẋ3 = x6

ẋ4 = u1− u2 + u3− u4 cos x3

ẋ5 = u1− u2 + u3− u4 sin x3

ẋ6 = 0.2 u1− u2− u3 + u4

You can specify the state function as follows:

z = zeros(6,1);
z(1) = x(4);
z(2) = x(5);
z(3) = x(6);
z(4) = (u(1) - u(2) + u(3) - u(4))*cos(x(3));
z(5) = (u(1) - u(2) + u(3) - u(4))*sin(x(3));
z(6) = 0.2*(u(1) - u(2) - u(3) + u(4));

9 Nonlinear MPC

9-6

State Function Jacobians

To improve computational efficiency, it is best practice to specify an analytical Jacobian for your state
function. If you do not specify a Jacobian, the controller computes the Jacobian using numerical
perturbation. To specify a Jacobian for your state function, set the Jacobian.StateFcn property of
the controller to one of the following.

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Jacobian.StateFcn = "myStateJacobian";
• Handle to a function in the current working folder or on the MATLAB path

Jacobian.StateFcn = @myStateJacobian;
• Anonymous function

Jacobian.StateFcn = @(x,u,params) myStateJacobian(x,u,params)

Your state Jacobian function must have one of the following signatures.

• If your controller does not use optional parameters:

function [A,Bmv] = myStateJacobian(x,u)
• If your controller uses parameters. Here params is a comma-separated list of parameters:

function [A,Bmv] = myStateJacobian(x,u,params)

The input arguments of the state Jacobian function are the same as the inputs of the state function.
This table describes the outputs of the Jacobian function, where:

• Nx is the number of states and is equal to the Dimensions.NumberOfStates property of the
controller

• Nu is the number of inputs, including all manipulated variables, measured disturbances, and
unmeasured disturbances, and is equal to the Dimensions.NumberOfInputs property of the
controller

Argument Description
A Jacobian of the state function output, z, with respect to x, returned as an Nx-by-

Nx array, where A i, j = ∂z i / ∂x j .
Bmv Jacobian of the state function output with respect to the manipulated variables,

specified as an Nx-by-Nmv array, where Bmv i, j = ∂z i / ∂u MV j and MV(j) is
the jth MV index in the Dimensions.MVIndex controller property. Bmv
contains the gradients with respect to only the manipulated variables in u, since
the measured and unmeasured disturbances are not decision variables.

Consider again, the state function with the following state equations:

ẋ1 = x4

ẋ2 = x5

ẋ3 = x6

ẋ4 = u1− u2 + u3− u4 cos x3

ẋ5 = u1− u2 + u3− u4 sin x3

ẋ6 = 0.2 u1− u2− u3 + u4

 Specify Prediction Model for Nonlinear MPC

9-7

To find the Jacobians, compute the partial derivatives of the state equations with respect to the states
and manipulated variables, assuming that all four inputs are manipulated variables.

A = zeros(6,6);
A(1,4) = 1;
A(2,5) = 1;
A(3,6) = 1;
A(4,3) = -(u(1) - u(2) + u(3) - u(4))*sin(x(3));
A(5,3) = (u(1) - u(2) + u(3) - u(4))*cos(x(3));
B = zeros(6,4);
B(4,:) = cos(x(3))*[1 -1 1 -1];
B(5,:) = sin(x(3))*[1 -1 1 -1];
B(6,:) = 0.2*[1 -1 -1 1];

Output Function
The output function of your prediction model relates the states and inputs at the current control
interval to the outputs. If the number of states and outputs of the prediction model are the same, you
can omit OutputFcn, which implies that all states are measurable; that is, each output corresponds
to one state.

Note OutputFcn cannot have direct feedthrough from any manipulated variable to any output at
any time; in other words, nonlinear MPC always assumes Dmv = 0.

You can specify your output function in one of the following ways.

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Model.OutputFcn = "myOutputFunction";

• Handle to a function in the current working folder or on the MATLAB path

Model.OutputFcn = @myOutputFunction;

• Anonymous function

Model.OutputFcn = @(x,u,params) myOutputFunction(x,u,params)

Your output function must have one of the following signatures.

• If your controller does not use optional parameters:

function y = myOutputFunction(x,u)

• If your controller uses parameters. Here, params is a comma-separated list of parameters:

function y = myOutputFunction(x,u,params)

This table describes the inputs and outputs of this function, where:

• Nx is the number of states and is equal to the Dimensions.NumberOfStates property of the
controller.

• Nu is the number of inputs, including all manipulated variables, measured disturbances, and
unmeasured disturbances, and is equal to the Dimensions.NumberOfInputs of the controller.

9 Nonlinear MPC

9-8

• NY is the number of outputs and is equal to the Dimensions.NumberOfOutputs property of the
controller.

Argument Input/Output Description
x Input Current states, specified as a column vector of length Nx.
u Input Current inputs, specified as a column vector of length Nu.
params Input Optional parameters, specified as a comma-separated list (for

example p1,p2,p3). The same parameters are passed to the
prediction model, custom cost function, and custom constraint
functions of the controller.

If your model uses optional parameters, you must specify the
number of parameters using Model.NumberOfParameters.

y Output Current outputs, returned as a column vector of length Ny.

As an example of an output function, consider the following output equations. Recall, that your output
function cannot have direct feedthrough from any manipulated variable to any output at any time.

y1 = x1

y2 = x2 + 0.2x3

y3 = x3 ⋅ x4

You can specify the output function as follows:

y = zeros(6,1);
y(1) = x(1);
y(2) = x(2)+0.2*x(3);
y(3) = x(3)*x(4);

Output Function Jacobians

To improve computational efficiency, it is best practice to specify an analytical Jacobian for your
output function. If you do not specify a Jacobian, the controller computes the Jacobian using
numerical perturbation. To specify a Jacobian for your output function, set the
Jacobian.OutputFcn property of the controller to one of the following.

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Jacobian.OutputFcn = "myOutputJacobian";

• Handle to a function in the current working folder or on the MATLAB path

Jacobian.OutputFcn = @myOutputJacobian;

• Anonymous function

Jacobian.OutputFcn = @(x,u,params) myOutputJacobian(x,u,params)

Your output Jacobian function must have one of the following signatures.

• If your controller does not use optional parameters:

function C = myOutputJacobian(x,u)

 Specify Prediction Model for Nonlinear MPC

9-9

• If your controller uses parameters. Here, params is a comma-separated list of parameters:

function C = myOutputJacobian(x,u,params)

The input arguments of the output Jacobian function are the same as the inputs of the output
function. This table describes the output of the Jacobian function. Since the output function cannot
have direct feedthrough from any manipulated variable to any output, the output Jacobian function
returns only the gradients of the output function with respect to the model states.

Argument Description
C Jacobian of the output function, returned as an Ny-by-Nx array, where

C i, j = ∂y i / ∂x j .

Consider again, the model with the following output equations:

y1 = x1

y2 = x2 + 0.2x3

y3 = x3 ⋅ x4

To find the Jacobians, compute the partial derivatives of the output equations with respect to the
states. Since the output function cannot have direct feedthrough from any manipulated variable to
any output at any time, you do not compute the Jacobian with respect to the manipulated variables.

C = zeros(3,4);
C(1,1) = 1;
C(2,2) = 1;
C(2,3) = 0.2;
C(3,3) = x(4);
C(3,4) = x(3);

Specify Optional Model Parameters
You can specify optional parameters for your nonlinear MPC prediction model, cost function, and
custom constraints. To do so, pass a comma-separated list of parameter arguments to your custom
functions (for example p1,p2,p3). These parameters must be numerical values. Also, you must
specify the number of model parameters using the Model.NumberOfParameters property of the
controller.

The same parameters are passed to the prediction model, custom cost function, custom constraint
functions, and their respective Jacobians. For example, even if the state function uses only parameter
p1, the constraint functions use only parameter p2, and the cost function uses only parameter p3,
you must still define three parameters. All of these parameters are passed into all of these functions,
and you must choose the correct parameter to use in each function.

For an example that specifies the sample time of a discrete-time state function as a parameter, see
“Swing-up Control of a Pendulum Using Nonlinear Model Predictive Control” on page 9-49.

Augment Prediction Model with Unmeasured Disturbances
You can augment your prediction model to include unmeasured disturbances. For example, if your
plant does not have an integrator and you want to reject a certain unmeasured disturbance, augment
your plan with a disturbance model. Doing so allows the external state estimator to detect the
disturbance and thus give the nonlinear MPC controller enough information to reject it.

9 Nonlinear MPC

9-10

During simulation, the controller passes a zero to each unmeasured disturbance input channel, since
the signals are unmeasured and assumed to be zero-mean by default.

To augment your prediction model, you must designate one or more input signals as unmeasured
disturbances when creating a controller using nlmpc. For example, create a controller where the first
two inputs are manipulated variables and the third input is an unmeasured disturbance (UD).

nlobj = nlmpc(nx,ny,'MV',[1 2],'UD',3);

Specify the unmeasured disturbance model in the state and output functions of your prediction
model. This unmeasured disturbance model can be any arbitrary model that accurately captures the
effect of the disturbance on your plant. For example:

• If you expect a step-like UD at a plant output, then specify the UD model as an integrator in your
state function, and add the integrator state to the plant output in your output function.

• If you expect a ramp-like UD at a plant input, then specify the UD model as an integrator and add
the integrator output to the input signal in your state function.

Any states that you add when specifying the unmeasured disturbance model are included in the
prediction model state vector. The values in these unmeasured disturbance model states reflect the
disturbance behavior during simulation. This state vector corresponds to the x input argument of
your state function and the X input argument to your custom cost and constraint functions.

For an example that augments the prediction model for random step-like output disturbances, see
“Nonlinear Model Predictive Control of an Exothermic Chemical Reactor” on page 9-61.

See Also
nlmpc

More About
• “Nonlinear MPC” on page 9-2
• “Specify Cost Function for Nonlinear MPC” on page 9-12
• “Specify Constraints for Nonlinear MPC” on page 9-19

 Specify Prediction Model for Nonlinear MPC

9-11

Specify Cost Function for Nonlinear MPC
While traditional linear MPC controllers optimize control actions to minimize a quadratic cost
function, nonlinear MPC controllers support generic custom cost functions. For example, you can
specify your cost function as a combination of linear or nonlinear functions of the system states and
inputs. To improve computational efficiency, you can also specify an analytical Jacobian for your
custom cost function.

Using a custom cost function, you can, for example:

• Maximize profitability
• Minimize energy consumption

When you specify a custom cost function for your nonlinear MPC controller, you can choose to either
replace or augment the standard quadratic MPC cost function. By default, an nlmpc controller
replaces the standard cost function with your custom cost function. In this case, the controller
ignores the standard tuning weights in its Weights property.

To use an objective function that is the sum of the standard costs and your custom costs, set the
Optimization.ReplaceStandardCost property of your nlmpc object to false. In this case, the
standard tuning weights specified in the Weights property of the controller contribute to the cost
function. However, you can eliminate any of the standard cost function terms by setting the
corresponding penalty weight to zero. For more information on the standard MPC cost function, see
“Standard Cost Function” on page 2-7.

Before simulating your controller, it is best practice to validate your custom functions, including the
cost function and its Jacobian, using the validateFcns command.

Custom Cost Function
To configure your nonlinear MPC controller to use a custom cost function, set its
Optimization.CustomCostFcn property to one of the following.

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Optimization.CustomCostFcn = "myCostFunction";
• Handle to a function in the current working folder or on the MATLAB path

Optimization.CustomCostFcn = @myCostFunction;
• Anonymous function

Optimization.CustomCostFcn = @(X,U,e,data,params) myCostFunction(X,U,e,data,params);

Your custom cost function must have one of the following signatures.

• If your controller does not use optional parameters:

function J = myCostFunction(X,U,e,data)
• If your controller uses parameters. Here, params is a comma-separated list of parameters:

function J = myCostFunction(X,U,e,data,params)

This table describes the inputs and outputs of this function, where:

9 Nonlinear MPC

9-12

• Nx is the number of states and is equal to the Dimensions.NumberOfStates property of the
controller.

• Nu is the number of inputs, including all manipulated variables, measured disturbances, and
unmeasured disturbances, and is equal to the Dimensions.NumberOfInputs property of the
controller.

• p is the prediction horizon.
• k is the current time.

Argument Input/Output Description
X Input State trajectory from time k to time k+p, specified as a (p+1)-by-Nx

array. The first row of X contains the current state values, which
means that the solver does not use the values in X(1,:) as
decision variables during optimization.

U Input Input trajectory from time k to time k+p, specified as a (p+1)-by-
Nu array. The final row of U is always a duplicate of the preceding
row; that is, U(end,:) = U(end-1,:). Therefore, the values in
the final row of U are not independent decision variables during
optimization.

e Input Slack variable for constraint softening, specified as a nonnegative
scalar. e is zero if there are no soft constraints in your controller.

If you have nonlinear soft constraints defined in your inequality
constraint function (Model.CustomIneqConFcn), use a positive
penalty weight on e and make them part of the cost function.

 Specify Cost Function for Nonlinear MPC

9-13

Argument Input/Output Description
data Input Additional signals, specified as a structure with the following

fields:

Field Description
Ts Prediction model sample time, as defined in

the Ts property of the controller
CurrentStates Current prediction model states, as specified

in the x input argument of nlmpcmove
LastMV MV moves used in previous control interval,

as specified in the lastmv input argument
of nlmpcmove

References Reference values for plant outputs, as
specified in the ref input argument of
nlmpcmove

MVTarget Manipulated variable targets, as specified in
the MVTarget property of an
nlmpcmoveopt object

PredictionHoriz
on

Prediction horizon, as defined in the
PredictionHorizon property of the
controller

NumOfStates Number of states, as defined in the
Dimensions.NumberOfStates property of
the controller

NumOfOutputs Number of outputs, as defined in the
Dimensions.NumberOfOutputs property
of the controller

NumOfInputs Number of inputs, as defined in the
Dimensions.NumberOfInputs property of
the controller

MVIndex Manipulated variables indices, as defined in
the Dimensions.MVIndex property of the
controller

MDIndex Measured disturbance indices, as defined in
the Dimensions.MDIndex property of the
controller

UDIndex Unmeasured disturbance indices, as defined
in the Dimensions.UDIndex property of
the controller

9 Nonlinear MPC

9-14

Argument Input/Output Description
params Input Optional parameters, specified as a comma-separated list (for

example p1,p2,p3). The same parameters are passed to the
prediction model, custom cost function, and custom constraint
functions of the controller. For example, if the state function uses
only parameter p1, the constraint functions use only parameter p2,
and the cost function uses only parameter p3, then all three
parameters are passed to all of these functions.

If your model uses optional parameters, you must specify the
number of parameters using the Model.NumberOfParameters
property of the controller.

J Output Computed cost, returned as a scalar

Your custom cost function must:

• Be a continuous, finite function of U, X, and e and have finite first derivatives
• Increase as the slack variable e increases or be independent of it

To use output variable values in your cost function, you must first derive them from the state and
input arguments using the prediction model output function, as specified in the Model.OutputFcn
property of the controller. For example, to compute the output trajectory Y from time k to time k+p,
use:

p = data.PredictionHorizon;
for i=1:p+1
 Y(i,:) = myOutputFunction(X(i,:)',U(i,:)',params)';
end

For more information on the prediction model output function, see “Specify Prediction Model for
Nonlinear MPC” on page 9-5.

Typically, you optimize control actions to minimize the cost function across the prediction horizon.
Since the cost function value must be a scalar, you compute the cost function at each prediction
horizon step and add the results together. For example, suppose that the stage cost function is:

J = 10u1
2 + 5x2

3 + x1

That is, you want to minimize the difference between the first output and its reference value, and the
product of the first manipulated variable and the second state. To compute the total cost function
across the prediction horizon, use:

p = data.PredictionHorizon;
U1 = U(1:p,data.MVIndex(1));
X1 = X(2:p+1,1);
X2 = X(2:p+1,2);
J = 10*sum(sum(U1.^2)) + 5*sum(sum(X2.^3) + sum(sum(X1));

In general, for cost functions, do not use the following values, since they are not part of the decision
variables used by the solver:

• U(end,:) — This row is a duplicate of the preceding row.
• X(1,:) — This row contains the current state values.

 Specify Cost Function for Nonlinear MPC

9-15

Since this example cost function is relatively simple, you can specify it using an anonymous function
handle.

For relatively simple costs, you can specify the cost function using an anonymous function handle. For
example, to specify an anonymous function that implements just the first term of the preceding cost
function, use:
Optimization.CustomCostFcn = @(X,U,data) 10*sum(sum((U(1:end-1,data.MVIndex(1)).^2));

Cost Function Jacobian
To improve computational efficiency, it is best practice to specify an analytical Jacobian for your
custom cost function. If you do not specify a Jacobian, the controller computes the Jacobian using
numerical perturbation. To specify a Jacobian for your cost function, set the
Jacobian.CustomCostFcn property of the controller to one of the following.

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Jacobian.CustomCostFcn = "myCostJacobian";
• Handle to a function in the current working folder or on the MATLAB path

Jacobian.CustomCostFcn = @myCostJacobian;
• Anonymous function

Jacobian.CustomCostFcn = @(X,U,e,data,params) myCostJacobian(X,U,e,data,params)

Your cost Jacobian function must have one of the following signatures.

• If your controller does not use optional parameters:

function [G,Gmv,Ge] = myCostJacobian(X,U,e,data)
• If your controller uses parameters. Here, params is a comma-separated list of parameters:

function [G,Gmv,Ge] = myCostJacobian(X,U,e,data,params)

The input arguments of the cost Jacobian function are the same as the inputs of the custom cost
function. This table describes the outputs of the Jacobian function, where:

• Nx is the number of states and is equal to the Dimensions.NumberOfStates property of the
controller.

• Nmv is the number of manipulated variables.
• p is the prediction horizon.

Argument Description
G Jacobian of the cost function with respect to the state trajectories, returned as a

p-by-Nx array, where G i, j = ∂J / ∂X i + 1, j . Compute G based on X from the
second row to row p+1, ignoring the first row.

9 Nonlinear MPC

9-16

Argument Description
Gmv Jacobian of the cost function with respect to the manipulated variable

trajectories, returned as a p-by-Nmv array, where Gmv i, j = ∂ J/ ∂U i, MV j and
MV(j) is the jth MV index in data.MVIndex.

Since the controller forces U(p+1,:) to equal U(p,:), if your cost function
uses U(p+1,:), you must include the impact of both U(p,:) and U(p+1,:) in
the Jacobian for U(p,:).

Ge Jacobian of the cost function with respect to the slack variable, e, returned as a
scalar, where Ge = ∂J / ∂e.

To use output variable values and their Jacobians in your cost Jacobian function, you must first derive
them from the state and input arguments. To do so, use the Jacobian of the prediction model output
function, as specified in the Jacobian.OutputFcn property of the controller. For example, to
compute the output variables Y and their Jacobians Yjacob from time k to time k+p, use:

p = data.PredictionHorizon;
for i=1:p+1
 Y(i,:) = myOutputFunction(X(i,:)',U(i,:)',params)';
end
for i=1:p+1
 Yjacob(i,:) = myOutputJacobian(X(i,:)',U(i,:)',params)';
end

Since prediction model output functions do not support direct feedthrough from inputs to outputs, the
output function Jacobian contains partial derivatives with respect to only the states in X. For more
information on the output function Jacobian, see “Specify Prediction Model for Nonlinear MPC” on
page 9-5.

To find the Jacobians, compute the partial derivatives of the cost function with respect to the state
trajectories, manipulated variable trajectories, and slack variable. For example, suppose that your
cost function is as follows, where u1 is the first manipulated variable.

J = 10u1
2 + 5x2

3 + x1

To compute the Jacobian with respect to the state trajectories, use the following. Recall that you
compute G based on X from the second row to row p+1, ignoring the first row.

p = data.PredictionHorizon;
Nx = data.NumOfStates;
U1 = U(1:p,data.MVIndex(1));
X2 = X(2:p+1,2);

G = zeros(p,Nx);
G(1:p,1) = 1;
G(1:p,2) = 15*X2.^2;

To compute the Jacobian with respect to the manipulated variable trajectories, use:

Nmv = length(data.MVIndex);

Gmv = zeros(p,Nmv);
Gmv(1:p,1) = 20*U1;

In this case, the derivative with respect to the slack variable is Ge = 0.

 Specify Cost Function for Nonlinear MPC

9-17

See Also
nlmpc

More About
• “Nonlinear MPC” on page 9-2
• “Specify Prediction Model for Nonlinear MPC” on page 9-5
• “Specify Constraints for Nonlinear MPC” on page 9-19

9 Nonlinear MPC

9-18

Specify Constraints for Nonlinear MPC
When you create a nonlinear MPC controller using an nlmpc object, you can define any of the
following constraints:

• Standard linear constraints on states, outputs, manipulated variables, and manipulated variable
rates of change

• Custom equality constraints, specified as linear or nonlinear functions of the system states, inputs,
and outputs

• Custom inequality constraints, specified as linear or nonlinear functions of the system states,
inputs, and outputs

The controller optimizes its control moves to satisfy all of these constraints; that is, the custom
constraints supplement the standard linear constraints.

To improve computational efficiency, you can also specify analytical Jacobians for your custom
equality and inequality constraints.

By specifying custom equality or inequality constraints, you can, for example:

• Require the plant to reach a target state at the end of the prediction horizon
• Require cumulative resource consumption to stay within specified limits

Before simulating your controller, it is best practice to validate your custom functions, including the
constraint functions and their Jacobians, using the validateFcns command.

Linear MPC controllers have properties for defining custom constraints on linear combinations of
inputs and outputs, as discussed in “Constraints on Linear Combinations of Inputs and Outputs” on
page 3-5. These properties are not available for nonlinear MPC controllers. Instead, you implement
such constraints within your custom equality or inequality constraint functions.

Standard Linear Constraints
The following table shows the standard linear constraints supported by nonlinear MPC controllers.
For each of these constraints, you can specify a single bound that applies across the entire prediction
horizon, or you can vary each constraint over the prediction horizon. For more information on setting
controller linear constraint properties, see nlmpc.

Constraint Controller Property Constraint Softening
Lower bounds on state i States(i).Min > -Inf Not applicable. State bounds

are always hard.
Upper bounds on state i States(i).Max < Inf Not applicable. State bounds

are always hard.
Lower bounds on output
variable i

OutputVariables(i).Min >
-Inf

OutputVariables(i).MinEC
R > 0

Default: 1 (soft)

 Specify Constraints for Nonlinear MPC

9-19

Constraint Controller Property Constraint Softening
Upper bounds on output
variable i

OutputVariables(i).Max <
Inf

OutputVariables(i).MaxEC
R > 0

Default: 1 (soft)
Lower bounds on manipulated
variable i

ManipulatedVariables(i).
Min > -Inf

ManipulatedVariables(i).
MinECR > 0

Default: 0 (hard)
Upper bounds on manipulated
variable i

ManipulatedVariables(i).
Max < Inf

ManipulatedVariables(i).
MaxECR > 0

Default: 0 (hard)
Lower bounds on manipulated
variable i rate of change

ManipulatedVariables(i).
RateMin > -Inf

ManipulatedVariables(i).
RateMinECR > 0

Default: 0 (hard)
Lower bounds on manipulated
variable i rate of change

ManipulatedVariables(i).
RateMax < Inf

ManipulatedVariables(i).
RateMaxECR > 0

Default: 0 (hard)

Custom Constraints
You can specify custom equality and inequality constraints for a nonlinear MPC controller. To
configure your nonlinear MPC controller to use custom equality or inequality constraints, set its
Optimization.CustomEqConFcn or Optimization.CustomIneqConFcn respectively. To do so,
specify the custom functions as one of the following.

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Optimization.CustomEqConFcn = "myEqConFunction";
Optimization.CustomIneqConFcn = "myIneqConFunction";

• Handle to a function in the current working folder or on the MATLAB path

Optimization.CustomEqConFcn = @myEqConFunction;
Optimization.CustomIneqConFcn = @myIneqConFunction;

• Anonymous function
Optimization.CustomEqConFcn = ...
 @(X,U,data,params) myEqConFunction(X,U,data,params);
Optimization.CustomIneqConFcn = ...
 @(X,U,e,data,params) myIneqConFunction(X,U,e,data,params);

Your constraint functions must have one of the following signatures.

• If your controller does not use optional parameters:

function ceq = myEqConFunction(X,U,data)
function cineq = myIneqConFunction(X,U,e,data)

• If your controller uses parameters. Here, params is a comma-separated list of parameters:

9 Nonlinear MPC

9-20

function ceq = myEqConFunction(X,U,data,params)
function cineq = myIneqConFunction(X,U,e,data,params)

This table describes the inputs and outputs of these functions, where:

• Nx is the number of states and is equal to the Dimensions.NumberOfStates property of the
controller.

• Nu is the number of inputs, including all manipulated variables, measured disturbances, and
unmeasured disturbances, and is equal to the Dimensions.NumberOfInputs property of the
controller.

• Nceq is the number of equality constraints.
• Ncineq is the number of inequality constraints.
• p is the prediction horizon.
• k is the current time.

Argument Input/Output Description
X Input State trajectory from time k to time k+p, specified as a (p+1)-by-Nx

array. The first row of X contains the current state values, which
means that the solver does not use the values in X(1,:) as
decision variables during optimization.

U Input Input trajectory from time k to time k+p, specified as a (p+1)-by-
Nu array. The final row of U is always a duplicate of the preceding
row; that is, U(end,:) = U(end-1,:). Therefore, the values in
the final row of U are not independent decision variables during
optimization.

e Input Slack variable for constraint softening, specified as a positive
scalar. Since all equality constraints are hard, this input argument
applies to only the inequality constraint function.

 Specify Constraints for Nonlinear MPC

9-21

Argument Input/Output Description
data Input Additional signals, specified as a structure with the following

fields:

Field Description
Ts Prediction model sample time, as defined in

the Ts property of the controller
CurrentStates Current prediction model states, as specified

in the x input argument of nlmpcmove
LastMV MV moves used in previous control, as

specified in the lastmv input argument of
nlmpcmove interval

References Reference values for plant outputs, as
specified in the ref input argument of
nlmpcmove

MVTarget Manipulated variable targets, as specified in
the MVTarget property of an
nlmpcmoveopt object

PredictionHoriz
on

Prediction horizon, as defined in the
PredictionHorizon property of the
controller

NumOfStates Number of states, as defined in the
Dimensions.NumberOfStates property of
the controller

NumOfOutputs Number of outputs, as defined in the
Dimensions.NumberOfOutputs property
of the controller

NumOfInputs Number of inputs, as defined in the
Dimensions.NumberOfInputs property of
the controller

MVIndex Manipulated variables indices, as defined in
the Dimensions.MVIndex property of the
controller

MDIndex Measured disturbance indices, as defined in
the Dimensions.MDIndex property of the
controller

UDIndex Unmeasured disturbance indices, as defined
in the Dimensions.UDIndex property of
the controller

9 Nonlinear MPC

9-22

Argument Input/Output Description
params Input Optional parameters, specified as a comma-separated list (for

example p1,p2,p3). The same parameters are passed to the
prediction model, custom cost function, and custom constraint
functions of the controller. For example, if the state function uses
only parameter p1, the constraint functions use only parameter p2,
and the cost function uses only parameter p3, then all three
parameters are passed to all of these functions.

If your model uses optional parameters, you must specify the
number of parameters using Model.NumberOfParameters.

ceq Output Computed equality constraint values, returned as a column vector
of length Nceq. An equality constraint is satisfied when the
corresponding output is 0.

cineq Output Computed inequality constraint values, returned as a column
vector of length Ncineq. An inequality constraint is satisfied when
the corresponding output is less than or equal to 0.

To use output variable values in your constraint functions, you must first derive them from the state
and input arguments using the prediction model output function, as specified in the
Model.OutputFcn property of the controller. For example, to compute the output trajectory Y from
time k to time k+p, use:

p = data.PredictionHorizon;
for i=1:p+1
 Y(i,:) = myOutputFunction(X(i,:)',U(i,:)',params)';
end

For more information on the prediction model output function, see “Specify Prediction Model for
Nonlinear MPC” on page 9-5.

In general:

• All equality constraints are hard.
• To define soft inequality constraints, use the slack variable input argument, e. For more

information on constraint softening in MPC, see “Constraint Softening” on page 1-7.
• Equality constraints should be continuous and have continuous first derivatives with respect to the

decision variables.

You can define custom constraints that apply across the entire prediction horizon. For example,
suppose that you want to satisfy the following inequality constraints across the prediction horizon,
where u1 is the first manipulated variable:

2x1
2− 3x2− 10 ≤ 0

u1
2− 5 ≤ 0

To define the constraint values across the prediction horizon, use:

p = data.PredictionHorizon;
U1 = U(1:p,data.MVIndex(1));
X1 = X(2:p+1,1);
X2 = X(2:p+1,2);

 Specify Constraints for Nonlinear MPC

9-23

cineq = [2*X1.^2 - 3*X2 - 10;
 U1.^2 - 5];

Applying these two constraints across p prediction horizon steps produces a column vector with 2*p
inequality constraints. These inequality constraints are satisfied when the corresponding element of
cineq is less than or equal to zero.

Alternatively, you can define constraints that apply at specific prediction horizon steps. For example,
suppose that you want the states of a third-order plant to be:

x1 = 5
x2 = − 3
x3 = 0

To specify these state values as constraints on only the final prediction horizon step, use:

ceq = [X(p+1,1) - 5;
 X(p+1,2) + 3;
 X(p+1,3)];

These equality constraints are satisfied when the corresponding element of ceq is equal to zero.

For relatively simple constraints, you can specify the constraint function using an anonymous function
handle. For example, to specify an anonymous function that implements the equality constraints, use:
Optimization.CustomEqConFcn = @(X,U,data) [X(p+1,1) - 5; X(p+1,2) + 3; X(p+1,3)];

Custom Constraint Jacobians
To improve computational efficiency, it is best practice to specify analytical Jacobians for your custom
constraint functions. If you do not specify Jacobians, the controller computes the Jacobians using
numerical perturbation.

To specify a Jacobian for your equality or inequality constraint functions, set the respective
Jacobian.CustomEqConFcn or Jacobian.CustomIneqConFcn property of the controller to one of
the following.

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Jacobian.CustomEqConFcn = "myEqConJacobian";
Jacobian.CustomIneqConFcn = "myIneqConJacobian";

• Handle to a function in the current working folder or on the MATLAB path

Jacobian.CustomEqConFcn = @myEqConJacobian;
Jacobian.CustomIneqConFcn = @myIneqConJacobian;

• Anonymous function
Jacobian.CustomEqConFcn = @(X,U,data,params) myEqConJacobian(X,U,data,params);
Jacobian.CustomInqConFcn = @(X,U,e,data,params) myIneqConJacobian(X,U,e,data,params);

Your constraint Jacobian functions must have one of the following signatures.

• If your controller does not use optional parameters:

9 Nonlinear MPC

9-24

function [Geq,Gmv] = myEqConJacobian(X,U,data)
function [Geq,Gmv,Ge] = myIneqConJacobian(X,U,e,data)

• If your controller uses parameters. Here, params is a comma-separated list of parameters:

function [Geq,Gmv] = myEqConJacobian(X,U,data,params)
function [Geq,Gmv,Ge] = myIneqConJacobian(X,U,e,data,params)

The input arguments of the constraint Jacobian functions are the same as the inputs of their
respective custom constraint functions. This table describes the outputs of the Jacobian functions,
where:

• Nx is the number of states and is equal to the Dimensions.NumberOfStates property of the
controller.

• Nmv is the number of manipulated variables.
• Nc is the number of constraints (either equality or inequality constraints, depending on the

constraint function).
• p is the prediction horizon.

Argument Description
G Jacobian of the equality or inequality constraints with respect to the state

trajectories, returned as a p-by-Nx-by-Nc array, where
G i, j, l = ∂c l / ∂X i + 1, j . Compute G based on X from the second row to row p
+1, ignoring the first row.

Gmv Jacobian of the equality or inequality constraints with respect to the
manipulated variable trajectories, returned as a p-by-Nmv-by-Nc array, where
Gmv i, j, l = ∂c l / ∂U i, MV j and MV(j) is the jth MV index in data.MVIndex.

Since the controller forces U(p+1,:) to equal U(p,:), if your constraints use
U(p+1,:), you must include the impact of both U(p,:) and U(p+1,:) in the
Jacobian for U(p,:).

Ge Jacobian of the inequality constraints with respect to the slack variable, e,
returned as a row vector of length Nc, where Ge l = ∂c l / ∂e

To use output variable Jacobians in your constraint Jacobian functions, you must first derive them
from the state and input arguments using the Jacobian of the prediction model output function, as
specified in the Jacobian.OutputFcn property of the controller. For example, to compute the
output variable Jacobians Yjacob from time k to time k+p, use:

p = data.PredictionHorizon;
for i=1:p+1
 Y(i,:) = myOutputFunction(X(i,:)',U(i,:)',params)';
end
for i=1:p+1
 Yjacob(i,:) = myOutputJacobian(X(i,:)',U(i,:)',params)';
end

Since prediction model output functions do not support direct feedthrough from inputs to outputs, the
output function Jacobian contains partial derivatives with respect to only the states in X. For more
information on the output function Jacobian, see “Specify Prediction Model for Nonlinear MPC” on
page 9-5.

 Specify Constraints for Nonlinear MPC

9-25

To find the Jacobians, compute the partial derivatives of the constraint functions with respect to the
state trajectories, manipulated variable trajectories, and slack variable. For example, suppose that
your constraint function is as follows, where u1 is the first manipulated variable.

2x1
2− 3x2− 10 ≤ 0

u1
2− 5 ≤ 0

To compute the Jacobian with respect to the state trajectories, use:

Nx = data.NumOfStates;
Nc = 2*p;
G = zeros(p,Nx,Nc);
G(1:p,2,1:p) = diag(2*X1 - 3);

To compute the Jacobian with respect to the manipulated variable trajectories, use:

Nmv = length(data.MVIndex);
Gmv = zeros(p,Nmv,Nc);
Gmv(1:p,1,p+1:2*p) = diag(2*u(1:p,data.MVIndex(1)));

In this case, the derivative with respect to the slack variable is Ge = zeros(20,1).

See Also
nlmpc

More About
• “Nonlinear MPC” on page 9-2
• “Specify Prediction Model for Nonlinear MPC” on page 9-5
• “Specify Cost Function for Nonlinear MPC” on page 9-12

9 Nonlinear MPC

9-26

Configure Optimization Solver for Nonlinear MPC
By default, nonlinear MPC controllers solve a nonlinear programming problem using the fmincon
function with the SQP algorithm, which requires Optimization Toolbox software. If you do not have
Optimization Toolbox software, you can specify your own custom nonlinear solver.

Solver Decision Variables
For nonlinear MPC controllers at time tk, the nonlinear optimization problem uses the following
decision variables:

• Predicted state values from time tk+1 to tk+p. These values correspond to rows 2 through p+1 of
the X input argument of your cost, and constraint functions, where p is the prediction horizon.

• Predicted manipulated variables from time tk to tk+p-1. These values correspond to the manipulated
variable columns in rows 1 through p of the U input argument of your cost, and constraint
functions.

Therefore, the number of decision variables NZ is equal to p(Nx+Nmv) + 1, Nx is the number of states,
Nmv is the number of manipulated variables, and the +1 is for the global slack variable.

Specify Initial Guesses
A properly configured standard linear MPC optimization problem has a unique solution. However,
nonlinear MPC optimization problems often allow multiple solutions (local minima), and finding a
solution can be difficult for the solver. In such cases, it is important to provide a good starting point
near the global optimum.

During closed-loop simulations, it is best practice to warm start your nonlinear solver. To do so, use
the predicted state and manipulated variable trajectories from the previous control interval as the
initial guesses for the current control interval. In Simulink, the Nonlinear MPC Controller block is
configured to use these trajectories as initial guesses by default. To use these trajectories as initial
guesses at the command line:

1 Return the opt output argument when calling nlmpcmove. This nlmpcmoveopt object contains
any run-time options you specified in the previous call to nlmpcmove. It also includes the initial
guesses for the state (opt.X0) and manipulated variable (opt.MV0) trajectories, and the global
slack variable (opt.Slack0).

2 Pass this object in as the options input argument to nlmpcmove for the next control interval.

These command-line simulation steps are best practices, even if you do not specify any other run-time
options.

Configure fmincon Options
By default, nonlinear MPC controllers optimize their control move using the fmincon function from
the Optimization Toolbox. When you first create your controller, the
Optimization.SolverOptions property of the nlmpc object contains the standard fmincon
options with the following nondefault settings:

• Use the SQP algorithm (SolverOptions.Algorithm = 'sqp')

 Configure Optimization Solver for Nonlinear MPC

9-27

• Use objective function gradients (SolverOptions.SpecifyObjectiveGradient = 'true')
• Use constraint gradients (SolverOptions.SpecifyConstraintGradient = 'true')
• Do not display optimization messages to the command window (SolverOptions.Display =

'none')

These nondefault options typically improve the performance of the nonlinear MPC controller.

You can modify the solver options for your application. For example, to specify the maximum number
of solver iterations for your application, set SolverOptions.MaxIter. For more information on the
available solver options, see fmincon.

In general, you should not modify the SpecifyObjectiveGradient and
SpecifyConstraintGradient solver options, since doing so can significantly affect controller
performance. For example, the constraint gradient matrices are sparse, and setting
SpecifyConstraintGradient to false would cause the solver to calculate gradients that are
known to be zero.

Specify Custom Solver
If you do not have Optimization Toolbox software, you can specify your own custom nonlinear solver.
To do so, create a custom wrapper function that converts the interface of your solver function to
match the interface expected by the nonlinear MPC controller. Your custom function must be a
MATLAB script or MAT-file on the MATLAB path. For an example that shows a template custom solver
wrapper function, see “Optimizing Tuberculosis Treatment Using Nonlinear MPC with a Custom
Solver” on page 9-68.

You can use the Nonlinear Programming solver developed by Embotech AG to simulate and generate
code for nonlinear MPC controllers. For more information, see “Implement MPC Controllers using
Embotech FORCESPRO Solvers” on page 10-67.

To configure your nlmpc object to use your custom solver wrapper function, set its
Optimization.CustomSolverFcn property in one of the following ways:

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Optimization.CustomSolverFcn = "myNLPSolver";
• Handle to a function in the current working folder or on the MATLAB path

Optimization.CustomSolverFcn = @myNLPSolver;

Your custom solver wrapper function must have the signature:

function [zopt,cost,flag] = myNLPSolver(FUN,z0,A,B,Aeq,Beq,LB,UB,NLCON)

This table describes the inputs and outputs of this function, where:

• NZ is the number of decision variables.
• Mcineq is the number of linear inequality constraints.
• Mceq is the number of linear equality constraints.
• Ncineq is the number of nonlinear inequality constraints.
• Nceq is the number of nonlinear equality constraints.

9 Nonlinear MPC

9-28

https://www.embotech.com/

Argument Input/Output Description
FUN Input Nonlinear cost function to minimize, specified as a handle to a

function with the signature:

[F,G] = FUN(z)

and arguments:

• z — Decision variables, specified as a vector of length NZ.
• F — Cost, returned as a scalar.
• G — Cost function gradients with respect to the decision

variables, returned as a column vector of length NZ, where
G i = ∂F/ ∂z i .

z0 Input Initial guesses for decision variable values, specified as a vector of
length NZ

A Input Linear inequality constraint array, specified as an Mcineq-by-NZ
array. Together, A and B define constraints of the form A ⋅ z ≤ B.

B Input Linear inequality constraint vector, specified as a column vector of
length Mcineq. Together, A and B define constraints of the form
A ⋅ z ≤ B.

Aeq Input Linear equality constraint array, specified as an Mceq-by-NZ array.
Together, Aeq and Beq define constraints of the form
Aeq ⋅ z = Beq.

Beq Input Linear equality constraint vector, specified as a column vector of
length Mceq. Together, Aeq and Beq define constraints of the form
Aeq ⋅ z = Beq.

LB Input Lower bounds for decision variables, specified as a column vector
of length NZ, where LB i ≤ z i .

UB Input Upper bounds for decision variables, specified as a column vector
of length NZ, where z i ≤ UB i .

 Configure Optimization Solver for Nonlinear MPC

9-29

Argument Input/Output Description
NLCON Input Nonlinear constraint function, specified as a handle to a function

with the signature:

[cineq,c,Gineq,Geq] = NLCON(z)

and arguments:

• z — Decision variables, specified as a vector of length NZ.
• cineq — Nonlinear inequality constraint values, returned as a

column vector of length Ncineq.
• ceq — Nonlinear equality constraint values, returned as a

column vector of length Nceq.
• Gineq — Nonlinear inequality constraint gradients with respect

to the decision variables, returned as an NZ-by-Ncineq array,
where Gineq i, j = ∂cineq j / ∂z i .

• Geq — Nonlinear equality constraint gradients with respect to
the decision variables, returned as an NZ-by-Nceq array, where
Geq i, j = ∂ceq j / ∂z i .

zopt Output Optimal decision variable values, returned as a vector of length NZ.
cost Output Optimal cost, returned as a scalar.
flag Output Exit flag, returned as one of the following:

• 1 — Optimization successful (first order optimization conditions
satisfied)

• 0 — Suboptimal solution (maximum number of iterations
reached)

• Negative value — Optimization failed

When you implement your custom solver function, it is best practice to have your solver use the cost
and constraint gradient information provided by the nonlinear MPC controller.

If you are unable to obtain a solution using your custom solver, try to identify a special condition for
which you know the solution, and start the solver at this condition. If the solver diverges from this
initial guess:

• Check the validity of the state and output functions in your prediction model.
• If you are using a custom cost function, make sure it is correct.
• If you are using the standard MPC cost function, verify the controller tuning weights.
• Make sure that all constraints are feasible at the initial guess.
• If you are providing custom Jacobian functions, validate your Jacobians using validateFcns.

See Also
nlmpc | fmincon

More About
• “Nonlinear MPC” on page 9-2

9 Nonlinear MPC

9-30

• “Specify Cost Function for Nonlinear MPC” on page 9-12
• “Optimizing Tuberculosis Treatment Using Nonlinear MPC with a Custom Solver” on page 9-68

 Configure Optimization Solver for Nonlinear MPC

9-31

Trajectory Optimization and Control of Flying Robot Using
Nonlinear MPC

This example shows how to find the optimal trajectory that brings a flying robot from one location to
another with minimum fuel cost using a nonlinear MPC controller. In addition, another nonlinear
MPC controller, along with an extended Kalman filter, drives the robot along the optimal trajectory in
closed-loop simulation.

Flying Robot

The flying robot in this example has four thrusters to move it around in a 2-D space. The model has
six states:

• x(1) - x inertial coordinate of center of mass
• x(2) - y inertial coordinate of center of mass
• x(3) - theta, robot (thrust) direction
• x(4) - vx, velocity of x
• x(5) - vy, velocity of y
• x(6) - omega, angular velocity of theta

For more information on the flying robot, see [1]. The model in the paper uses two thrusts ranging
from -1 to 1. However, this example assumes that there are four physical thrusts in the robot, ranging
from 0 to 1, to achieve the same control freedom.

9 Nonlinear MPC

9-32

Trajectory Planning

The robot initially rests at [-10,-10] with an orientation angle of pi/2 radians (facing north). The
flying maneuver for this example is to move and park the robot at the final location [0,0] with an
angle of 0 radians (facing east) in 12 seconds. The goal is to find the optimal path such that the total
amount of fuel consumed by the thrusters during the maneuver is minimized.

Nonlinear MPC is an ideal tool for trajectory planning problems because it solves an open-loop
constrained nonlinear optimization problem given the current plant states. With the availability of a
nonlinear dynamic model, MPC can make more accurate decisions.

In this example, the target prediction time is 12 seconds. Therefore, specify a sample time of 0.4
seconds and prediction horizon of 30 steps. Create a multistage nonlinear MPC object with 6 states
and 4 inputs. By default, all the inputs are manipulated variables (MVs).

Ts = 0.4;
p = 30;
nx = 6;
nu = 4;
nlobj = nlmpcMultistage(p,nx,nu);
nlobj.Ts = Ts;

For a path planning problem, it is typical to allow MPC to have free moves at each prediction step,
which provides the maximum number of decision variables for the optimization problem. Since
planning usually runs at a much slower sampling rate than a feedback controller, the extra
computation load introduced by a larger optimization problem can be accepted.

Specify the prediction model state function using the function name. You can also specify functions
using a function handle. For details on the state function, open FlyingRobotStateFcn.m. For more
information on specifying the prediction model, see “Specify Prediction Model for Nonlinear MPC” on
page 9-5.

nlobj.Model.StateFcn = "FlyingRobotStateFcn";

Specify the Jacobian of the state function using a function handle. It is best practice to provide an
analytical Jacobian for the prediction model. Doing so significantly improves simulation efficiency. For
details on the Jacobian function, open FlyingRobotStateJacobianFcn.m.

nlobj.Model.StateJacFcn = @FlyingRobotStateJacobianFcn;

A trajectory planning problem usually involves a nonlinear cost function, which can be used to find
the shortest distance, the maximal profit, or as in this case, the minimal fuel consumption. Because
the thrust value is a direct indicator of fuel consumption, compute the fuel cost as the sum of the
thrust values at each prediction step from stage 1 to stage p. Specify this cost function using a named
function. For more information on specifying cost functions, see “Specify Cost Function for Nonlinear
MPC” on page 9-12.

for ct = 1:p
 nlobj.Stages(ct).CostFcn = 'FlyingRobotCostFcn';
end

The goal of the maneuver is to park the robot at [0,0] with an angle of 0 radians at the 12th second.
Specify this goal as the terminal state constraint, where every position and velocity state at the last
prediction step (stage p+1) should be zero. For more information on specifying constraint functions,
see “Specify Constraints for Nonlinear MPC” on page 9-19.

 Trajectory Optimization and Control of Flying Robot Using Nonlinear MPC

9-33

nlobj.Model.TerminalState = zeros(6,1);

It is best practice to provide analytical Jacobian functions for your stage cost and constraint functions
as well. However, this example intentionally skips them so that their Jacobian is computed by the
nonlinear MPC controller using the built-in numerical perturbation method.

Each thrust has an operating range between 0 and 1, which is translated into lower and upper
bounds on the MVs.

for ct = 1:nu
 nlobj.MV(ct).Min = 0;
 nlobj.MV(ct).Max = 1;
end

Specify the initial conditions for the robot.

x0 = [-10;-10;pi/2;0;0;0]; % robot parks at [-10, -10], facing north
u0 = zeros(nu,1); % thrust is zero

It is best practice to validate the user-provided model, cost, and constraint functions and their
Jacobians. To do so, use the validateFcns command.

validateFcns(nlobj,x0,u0);

Model.StateFcn is OK.
Model.StateJacFcn is OK.
"CostFcn" of the following stages [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30] are OK.
Analysis of user-provided model, cost, and constraint functions complete.

The optimal state and MV trajectories can be found by calling the nlmpcmove command once, given
the current state x0 and last MV u0. The optimal cost and trajectories are returned as part of the
info output argument.

[~,~,info] = nlmpcmove(nlobj,x0,u0);

Plot the optimal trajectory. The optimal cost is 7.8.

FlyingRobotPlotPlanning(info,Ts);

Optimal fuel consumption = 7.797825

9 Nonlinear MPC

9-34

 Trajectory Optimization and Control of Flying Robot Using Nonlinear MPC

9-35

9 Nonlinear MPC

9-36

The first plot shows the optimal trajectory of the six robot states during the maneuver. The second
plot shows the corresponding optimal MV profiles for the four thrusts. The third plot shows the X-Y
position trajectory of the robot, moving from [-10 -10 pi/2] to [0 0 0].

Feedback Control for Path Following

After the optimal trajectory is found, a feedback controller is required to move the robot along the
path. In theory, you can apply the optimal MV profile directly to the thrusters to implement feed-
forward control. However, in practice, a feedback controller is needed to reject disturbances and
compensate for modeling errors.

You can use different feedback control techniques for tracking. In this example, you use a generic
nonlinear MPC controller to move the robot to the final location. In this path tracking problem, you
track references for all six states (the number of outputs equals the number of states).

ny = 6;
nlobj_tracking = nlmpc(nx,ny,nu);

In standard cost function, zero weights are applied by default to one or more OVs because there are fewer MVs than OVs.

Use the same state function and its Jacobian function.

nlobj_tracking.Model.StateFcn = nlobj.Model.StateFcn;
nlobj_tracking.Jacobian.StateFcn = nlobj.Model.StateJacFcn;

 Trajectory Optimization and Control of Flying Robot Using Nonlinear MPC

9-37

For tracking control applications, reduce the computational effort by specifying shorter prediction
horizon (no need to look far into the future) and control horizon (for example, free moves are
allocated at the first few predictrion steps).

nlobj_tracking.Ts = Ts;
nlobj_tracking.PredictionHorizon = 10;
nlobj_tracking.ControlHorizon = 4;

The default cost function in nonlinear MPC is a standard quadratic cost function suitable for
reference tracking and disturbance rejection. For tracking, tracking error has higher priority (larger
penalty weights on outputs) than control efforts (smaller penalty weights on MV rates).

nlobj_tracking.Weights.ManipulatedVariablesRate = 0.2*ones(1,nu);
nlobj_tracking.Weights.OutputVariables = 5*ones(1,nx);

Set the same bounds for the thruster inputs.

for ct = 1:nu
 nlobj_tracking.MV(ct).Min = 0;
 nlobj_tracking.MV(ct).Max = 1;
end

Also, to reduce fuel consumption, it is clear that u1 and u2 cannot be positive at any time during the
operation. Therefore, implement equality constraints such that u(1)*u(2) must be 0 for all
prediction steps. Apply similar constraints for u3 and u4.

nlobj_tracking.Optimization.CustomEqConFcn = ...
 @(X,U,data) [U(1:end-1,1).*U(1:end-1,2); U(1:end-1,3).*U(1:end-1,4)];

Validate your prediction model and custom functions, and their Jacobians.

validateFcns(nlobj_tracking,x0,u0);

Model.StateFcn is OK.
Jacobian.StateFcn is OK.
No output function specified. Assuming "y = x" in the prediction model.
Optimization.CustomEqConFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

Nonlinear State Estimation

In this example, only the three position states (x, y and angle) are measured. The velocity states are
unmeasured and must be estimated. Use an extended Kalman filter (EKF) from Control System
Toolbox™ for nonlinear state estimation.

Because an EKF requires a discrete-time model, you use the trapezoidal rule to transition from x(k) to
x(k+1), which requires the solution of nx nonlinear algebraic equations. For more information, open
FlyingRobotStateFcnDiscreteTime.m.

DStateFcn = @(xk,uk,Ts) FlyingRobotStateFcnDiscreteTime(xk,uk,Ts);

Measurement can help the EKF correct its state estimation. Only the first three states are measured.

DMeasFcn = @(xk) xk(1:3);

Create the EKF, and indicate that the measurements have little noise.

EKF = extendedKalmanFilter(DStateFcn,DMeasFcn,x0);
EKF.MeasurementNoise = 0.01;

9 Nonlinear MPC

9-38

Closed-Loop Simulation of Tracking Control

Simulate the system for 32 steps with correct initial conditions.

Tsteps = 32;
xHistory = x0';
uHistory = [];
lastMV = zeros(nu,1);

The reference signals are the optimal state trajectories computed at the planning stage. When
passing these trajectories to the nonlinear MPC controller, the current and future trajectory is
available for previewing.

Xopt = info.Xopt;
Xref = [Xopt(2:p+1,:);repmat(Xopt(end,:),Tsteps-p,1)];

Use nlmpcmove and nlmpcmoveopt command for closed-loop simulation.

hbar = waitbar(0,'Simulation Progress');
options = nlmpcmoveopt;
for k = 1:Tsteps
 % Obtain plant output measurements with sensor noise.
 yk = xHistory(k,1:3)' + randn*0.01;
 % Correct state estimation based on the measurements.
 xk = correct(EKF, yk);
 % Compute the control moves with reference previewing.
 [uk,options] = nlmpcmove(nlobj_tracking,xk,lastMV,Xref(k:min(k+9,Tsteps),:),[],options);
 % Predict the state for the next step.
 predict(EKF,uk,Ts);
 % Store the control move and update the last MV for the next step.
 uHistory(k,:) = uk';
 lastMV = uk;
 % Update the real plant states for the next step by solving the
 % continuous-time ODEs based on current states xk and input uk.
 ODEFUN = @(t,xk) FlyingRobotStateFcn(xk,uk);
 [TOUT,YOUT] = ode45(ODEFUN,[0 Ts], xHistory(k,:)');
 % Store the state values.
 xHistory(k+1,:) = YOUT(end,:);
 % Update the status bar.
 waitbar(k/Tsteps, hbar);
end
close(hbar)

Compare the planned and actual closed-loop trajectories.

FlyingRobotPlotTracking(info,Ts,p,Tsteps,xHistory,uHistory);

Actual fuel consumption = 10.771121

 Trajectory Optimization and Control of Flying Robot Using Nonlinear MPC

9-39

9 Nonlinear MPC

9-40

 Trajectory Optimization and Control of Flying Robot Using Nonlinear MPC

9-41

The nonlinear MPC feedback controller successfully moves the robot (blue blocks), following the
optimal trajectory (yellow blocks), and parks it at the final location (red block) in the last figure.

The actual fuel cost is higher than the planned cost. The main reason for this result is that, since we
used shorter prediction and control horizons in the feedback controller, the control decision at each
interval is suboptimal compared to the optimization problem used in the planning stage.

References

[1] Y. Sakawa. "Trajectory planning of a free-flying robot by using the optimal control." Optimal
Control Applications and Methods, Vol. 20, 1999, pp. 235-248.

See Also
Nonlinear MPC Controller | nlmpc

More About
• “Nonlinear MPC” on page 9-2

9 Nonlinear MPC

9-42

Generate Code to Plan and Execute Collision-Free Trajectories
using KINOVA Gen3 Manipulator

This example shows how to generate code in order to speed up planning and execution of closed-loop
collision-free robot trajectories using model predictive control (MPC). For more information on how to
use MPC for motion planning of robot manipulators, see the example “Plan and Execute Collision-
Free Trajectories Using KINOVA Gen3 Manipulator” (Robotics System Toolbox).

Modifications for code generation

To enable code generation, adapt the code in “Plan and Execute Collision-Free Trajectories Using
KINOVA Gen3 Manipulator” (Robotics System Toolbox) following the steps below.

• Ensure all helper “Nonlinear MPC” on page 9-2 functions are stored as separate program files
instead of “Anonymous Functions”. This example requires the following helper files.

- Custom cost function: nlmpcCostFunctionKINOVACodeGen.m

- Custom inequality constraints: nlmpcIneqConFunctionKINOVACodeGen.m

- State function: nlmpcModelKINOVACodeGen.m

- Output function: nlmpcOutputKINOVACodeGen.m

- Jacobian of custom cost function: nlmpcJacobianCostKINOVACodeGen.m

- Jacobian of custom inequality constraints: nlmpcJacobianConstraintKINOVACodeGen.m

- Jacobian of state function: nlmpcJacobianModelKINOVACodeGen.m

- Jacobian of output function: nlmpcJacobianOutputKINOVACodeGen.m

• Use the Parameters property of the nlmpcmoveopt object (and, when a mex file, the
onlineData structure) to pass to the controller any parameter that might change at runtime
(that is, at each time step) or between consecutive runs. For example, to enable the update of
obstacles poses according to new sensor readings at each time step, the values of the current
obstacle poses (posesNow) are added to the params cell variable. Similarly, to update the target
robot pose online, the target pose (poseFinal) is added to the Parameters list. All the
parameters must be numerical values. At each time step, the updated value of params is then
copied into the Parameters property of either the nlmpcmoveopt object (if nlmpcmove is used)
or in the onlineData structure (if a MEX file is used).

• Use persistent variables to pass in variables that are not numerical and are not externally
modified at runtime. For example, the rigidBodyTree (Robotics System Toolbox) object robot
and the cell array of collisionMesh (Robotics System Toolbox) objects world are created and
saved as persistent variables the first time a helper function is executed using the following code.

persistent robot world
if isempty(robot)
 robot = loadrobot('kinovaGen3', 'DataFormat', 'column');
 [world, ~] = helperCreateObstaclesKINOVA(posesNow);
end

• Ensure all the functions used in helper files support code generation. For a list of built-in MATLAB
functions supported for code generation, see this page. To test if a custom function supports code

 Generate Code to Plan and Execute Collision-Free Trajectories using KINOVA Gen3 Manipulator

9-43

https://www.mathworks.com/help/referencelist.html?type=function&capability=codegen

generation, use coder.screener (Simulink). For example, try running
coder.screener('nlmpcIneqConFunctionKINOVA'). This example requires that loadrobot
(Robotics System Toolbox) and checkCollision (Robotics System Toolbox) support code
generation.

• Use getCodeGenerationData and buildMEX to generate code for the nlmpc object with the
specified properties. Replace nlmpcmove in the original example with the generated MEX file to
compute optimal control actions.

Robot Description and Poses

Load the KINOVA Gen3 rigid body tree (RBT) model.

robot = loadrobot('kinovaGen3', 'DataFormat', 'column');

Get the number of joints.

numJoints = numel(homeConfiguration(robot));

Specify the robot frame where the end-effector is attached.

endEffector = "EndEffector_Link";

Specify initial and desired end-effector poses. Use inverse kinematics to solve for the initial robot
configuration given a desired pose.

% Initial end-effector pose
taskInit = trvec2tform([[0.4 0 0.2]])*axang2tform([0 1 0 pi]);

% Compute current robot joint configuration using inverse kinematics
ik = inverseKinematics('RigidBodyTree', robot);
ik.SolverParameters.AllowRandomRestart = false;
weights = [1 1 1 1 1 1];
currentRobotJConfig = ik(endEffector, taskInit, weights, robot.homeConfiguration);
currentRobotJConfig = wrapToPi(currentRobotJConfig);

% Final (desired) end-effector pose
taskFinal = trvec2tform([0.35 0.55 0.35])*axang2tform([0 1 0 pi]);
anglesFinal = rotm2eul(taskFinal(1:3,1:3),'XYZ');
poseFinal = [taskFinal(1:3,4);anglesFinal']; % 6x1 vector for final pose: [x, y, z, phi, theta, psi]

Collision Meshes and Obstacles

To check for and avoid collisions during control, you must setup a collision world as a set of collision
objects. This example uses collisionSphere (Robotics System Toolbox) objects as obstacles to
avoid. To plan using static instead of moving objects, set isMovingObst to false.

isMovingObst = true;

The obstacle sizes and locations are initialized in the
helperCreateMovingObstaclesKINOVACodeGen helper function. To add more static obstacles,
add collision objects in the world array.

if isMovingObst == true
 helperCreateMovingObstaclesKINOVACodeGen
else
 posesNow = [0.4 0.4 0.25 ; 0.3 0.3 0.4];
end
[world, numObstacles] = helperCreateObstaclesKINOVACodeGen(posesNow);

9 Nonlinear MPC

9-44

Visualize the robot at the initial configuration. You should see the obstacles in the environment as
well.

x0 = [currentRobotJConfig', zeros(1,numJoints)];
helperInitialVisualizerKINOVACodeGen;

Specify a safety distance away from the obstacles. This value is used in the inequality constraint
function of the nonlinear MPC controller.

safetyDistance = 0.01;

Design Nonlinear Model Predictive Controller

You can design the nonlinear model predictive controller using the
helperDesignNLMPCobjKINOVACodeGen helper file, which creates an nlmpc controller object. To
view the file, at the MATLAB command line, enter edit helperDesignNLMPCobjKINOVACodeGen.

helperDesignNLMPCobjKINOVACodeGen;

Closed-Loop Trajectory Planning

Simulate the robot for a maximum of 50 steps with correct initial conditions.

 Generate Code to Plan and Execute Collision-Free Trajectories using KINOVA Gen3 Manipulator

9-45

Initialize Simulation Parameters

maxIters = 50;
u0 = zeros(1,numJoints);
mv = u0';
time = 0;
goalReached = false;

Generate Code for nlmpc Object

useMex = true;
buildMex = true;
if useMex
 [coredata, onlinedata] = getCodeGenerationData(nlobj,x0',u0',paras);
 if buildMex
 mexfcn = buildMEX(nlobj,'kinovaMex',coredata,onlinedata);
 end
end

Generating MEX function "kinovaMex" from nonlinear MPC to speed up simulation.
Code generation successful.

MEX function "kinovaMex" successfully generated.

Initialize Data Array for Control

positions = zeros(numJoints,maxIters);
positions(:,1) = x0(1:numJoints)';

velocities = zeros(numJoints,maxIters);
velocities(:,1) = x0(numJoints+1:end)';

accelerations = zeros(numJoints,maxIters);
accelerations(:,1) = u0';

timestamp = zeros(1,maxIters);
timestamp(:,1) = time;

Generate Trajectory

Use the generated MEX file kinovaMex instead of the nlmpcmove function to speed up closed-loop
trajectory generation. Specify the trajectory generation online options using the argument
onlineData.

Each iteration calculates the position, velocity, and acceleration of the joints to avoid obstacles as
they move towards the goal. The helperCheckGoalReachedKINOVACodeGen script checks if the
robot has reached the goal. The helperUpdateMovingObstaclesKINOVACodeGen script moves the
obstacle locations based on the time step.

options = nlmpcmoveopt;

for timestep=1:maxIters
 disp(['Calculating control at timestep ', num2str(timestep)]);
 % Optimize next trajectory point
 if ~useMex
 options.Parameters = paras;
 [mv,options,info] = nlmpcmove(nlobj,x0,mv,[],[], options);
 else

9 Nonlinear MPC

9-46

 onlinedata.Parameters = paras;
 [mv,onlinedata,info] = kinovaMex(x0',mv,onlinedata);
 end
 if info.ExitFlag < 0
 disp('Failed to compute a feasible trajectory. Aborting...')
 break;
 end
 % Update states and time for next iteration
 x0 = info.Xopt(2,:);
 time = time + nlobj.Ts;
 % Store trajectory points
 positions(:,timestep+1) = x0(1:numJoints)';
 velocities(:,timestep+1) = x0(numJoints+1:end)';
 accelerations(:,timestep+1) = info.MVopt(2,:)';
 timestamp(timestep+1) = time;
 % Check if goal is achieved
 helperCheckGoalReachedKINOVACodeGen;
 if goalReached
 break;
 end
 % Update obstacle pose if it is moving
 if isMovingObst
 helperUpdateMovingObstaclesKINOVACodeGen;
 end
end

Calculating control at timestep 1
Calculating control at timestep 2
Calculating control at timestep 3
Calculating control at timestep 4
Calculating control at timestep 5
Calculating control at timestep 6
Calculating control at timestep 7
Calculating control at timestep 8

Target configuration reached.

Execute Planned Trajectory Using Low-Fidelity Robot Control and Simulation

Trim the trajectory vectors based on the time steps calculated from the plan.

tFinal = timestep+1;
positions = positions(:,1:tFinal);
velocities = velocities(:,1:tFinal);
accelerations = accelerations(:,1:tFinal);
timestamp = timestamp(:,1:tFinal);

visTimeStep = 0.2;

Use a jointSpaceMotionModel object to track the trajectory with computed-torque control. The
helperTimeBasedStateInputsKINOVA function generates the derivative inputs for the ode15s
ODE solver to simulate the robot movement along the computed trajectory.

motionModel = jointSpaceMotionModel('RigidBodyTree', robot);

% Control robot to target trajectory points in simulation using low-fidelity model
initState = [positions(:,1);velocities(:,1)];
targetStates = [positions;velocities;accelerations]';
[t,robotStates] = ode15s(@(t,state) helperTimeBasedStateInputsKINOVA(motionModel, timestamp, targetStates, t, state), [timestamp(1):visTimeStep:timestamp(end)], initState);

 Generate Code to Plan and Execute Collision-Free Trajectories using KINOVA Gen3 Manipulator

9-47

Visualize the robot motion.

helperFinalVisualizerKINOVACodeGen;

As expected, the robot successfully moves along the planned trajectory and avoids the obstacles.

See Also
Nonlinear MPC Controller | nlmpc

More About
• “Nonlinear MPC” on page 9-2

9 Nonlinear MPC

9-48

Swing-up Control of a Pendulum Using Nonlinear Model
Predictive Control

This example uses a nonlinear model predictive controller object and block to achieve swing-up and
balancing control of an inverted pendulum on a cart.

This example requires Optimization Toolbox™ software to provide the default nonlinear programming
solver for nonlinear MPC to compute optimal control moves at each control interval.

Pendulum/Cart Assembly

The plant for this example is a pendulum/cart assembly, where z is the cart position and theta is the
pendulum angle. The manipulated variable for this system is a variable force F acting on the cart. The
range of the force is between -100 and 100. An impulsive disturbance dF can push the pendulum as
well.

Control Objectives

Assume the following initial conditions for the pendulum/cart assembly.

• The cart is stationary at z = 0.
• The pendulum is in a downward equilibrium position where theta = -pi.

The control objectives are:

 Swing-up Control of a Pendulum Using Nonlinear Model Predictive Control

9-49

• Swing-up control: Initially swing the pendulum up to an inverted equilibrium position where z = 0
and theta = 0.

• Cart position reference tracking: Move the cart to a new position with a step setpoint change,
keeping the pendulum inverted.

• Pendulum balancing: When an impulse disturbance of magnitude of 2 is applied to the inverted
pendulum, keep the pendulum balanced, and return the cart to its original position.

The downward equilibrium position is stable, and the inverted equilibrium position is unstable, which
makes swing-up control more challenging for a single linear controller, which nonlinear MPC handles
easily.

Control Structure

In this example, the nonlinear MPC controller has the following I/O configuration.

• One manipulated variable: Variable force (F)
• Two measured outputs: Cart position (z) and pendulum angle (theta)

Two other states, cart velocity (zdot) and pendulum angular velocity (thetadot) are not measurable.

While the setpoint of the cart position, z, can vary, the setpoint of the pendulum angle, theta, is
always 0 (inverted equilibrium position).

Create Nonlinear MPC Controller

Create a nonlinear MPC controller with the proper dimensions using an nlmpc object. In this
example, the prediction model has 4 states, 2 outputs, and 1 input (MV).

nx = 4;
ny = 2;
nu = 1;
nlobj = nlmpc(nx, ny, nu);

In standard cost function, zero weights are applied by default to one or more OVs because there are fewer MVs than OVs.

The prediction model has a sample time of 0.1 seconds, which is the same as the controller sample
time.

Ts = 0.1;
nlobj.Ts = Ts;

Set the prediction horizon to 10, which is long enough to capture major dynamics in the plant but not
so long that it hurts computational efficiency.

nlobj.PredictionHorizon = 10;

Set the control horizon to 5, which is long enough to give the controller enough degrees of freedom
to handle the unstable mode without introducing excessive decision variables.

nlobj.ControlHorizon = 5;

Specify Nonlinear Plant Model

The major benefit of nonlinear model predictive control is that it uses a nonlinear dynamic model to
predict plant behavior in the future across a wide range of operating conditions.

9 Nonlinear MPC

9-50

This nonlinear model is usually a first principle model consisting of a set of differential and algebraic
equations (DAEs). In this example, a discrete-time cart and pendulum system is defined in the
pendulumDT0 function. This function integrates the continuous-time model, pendulumCT0, between
control intervals using a multistep forward Euler method. The same function is also used by the
nonlinear state estimator.

nlobj.Model.StateFcn = "pendulumDT0";

To use a discrete-time model, set the Model.IsContinuousTime property of the controller to
false.

nlobj.Model.IsContinuousTime = false;

The prediction model uses an optional parameter, Ts, to represent the sample time. Using this
parameter means that, if you change the prediction sample time during the design, you do not have
to modify the pendulumDT0 file.

nlobj.Model.NumberOfParameters = 1;

The two plant outputs are the first and third state in the model, the cart position and pendulum angle,
respectively. The corresponding output function is defined in the pendulumOutputFcn function.

nlobj.Model.OutputFcn = 'pendulumOutputFcn';

It is best practice to provide analytical Jacobian functions whenever possible, since they significantly
improve the simulation speed. In this example, provide a Jacobian for the output function using an
anonymous function.

nlobj.Jacobian.OutputFcn = @(x,u,Ts) [1 0 0 0; 0 0 1 0];

Since you do not provide Jacobian for the state function, the nonlinear MPC controller estimates the
state function Jacobian during optimization using numerical perturbation. Doing so slows down
simulation to some degree.

Define Cost and Constraints

Like linear MPC, nonlinear MPC solves a constrained optimization problem at each control interval.
However, since the plant model is nonlinear, nonlinear MPC converts the optimal control problem into
a nonlinear optimization problem with a nonlinear cost function and nonlinear constraints.

The cost function used in this example is the same standard cost function used by linear MPC, where
output reference tracking and manipulated variable move suppression are enforced. Therefore,
specify standard MPC tuning weights.

nlobj.Weights.OutputVariables = [3 3];
nlobj.Weights.ManipulatedVariablesRate = 0.1;

The cart position is limited to the range -10 to 10.

nlobj.OV(1).Min = -10;
nlobj.OV(1).Max = 10;

The force has a range between -100 and 100.

nlobj.MV.Min = -100;
nlobj.MV.Max = 100;

 Swing-up Control of a Pendulum Using Nonlinear Model Predictive Control

9-51

Validate Nonlinear MPC Controller

After designing a nonlinear MPC controller object, it is best practice to check the functions you
defined for the prediction model, state function, output function, custom cost, and custom
constraints, as well as their Jacobians. To do so, use the validateFcns command. This function
detects any dimensional and numerical inconsistencies in these functions.

x0 = [0.1;0.2;-pi/2;0.3];
u0 = 0.4;
validateFcns(nlobj,x0,u0,[],{Ts});

Model.StateFcn is OK.
Model.OutputFcn is OK.
Jacobian.OutputFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

State Estimation

In this example, only two plant states (cart position and pendulum angle) are measurable. Therefore,
you estimate the four plant states using an extended Kalman filter. Its state transition function is
defined in pendulumStateFcn.m and its measurement function is defined in
pendulumMeasurementFcn.m.

EKF = extendedKalmanFilter(@pendulumStateFcn, @pendulumMeasurementFcn);

Closed-Loop Simulation in MATLAB®

Specify the initial conditions for simulations by setting the initial plant state and output values. Also,
specify the initial state of the extended Kalman filter.

The initial conditions of the simulation areas follows.

• The cart is stationary at z = 0.
• The pendulum is in a downward equilibrium position, theta = -pi.

x = [0;0;-pi;0];
y = [x(1);x(3)];
EKF.State = x;

mv is the optimal control move computed at any control interval. Initialize mv to zero, since the force
applied to the cart is zero at the beginning.

mv = 0;

In the first stage of the simulation, the pendulum swings up from a downward equilibrium position to
an inverted equilibrium position. The state references for this stage are all zero.

yref1 = [0 0];

At a time of 10 seconds, the cart moves from position 0 to 5. Set the state references for this position.

yref2 = [5 0];

Using the nlmpcmove command, compute optimal control moves at each control interval. This
function constructs a nonlinear programming problem and solves it using the fmincon function from
the Optimization Toolbox.

9 Nonlinear MPC

9-52

Specify the prediction model parameter using an nlmpcmoveopt object, and pass this object to
nlmpcmove.

nloptions = nlmpcmoveopt;
nloptions.Parameters = {Ts};

Run the simulation for 20 seconds.

Duration = 20;
hbar = waitbar(0,'Simulation Progress');
xHistory = x;
for ct = 1:(20/Ts)
 % Set references
 if ct*Ts<10
 yref = yref1;
 else
 yref = yref2;
 end
 % Correct previous prediction using current measurement.
 xk = correct(EKF, y);
 % Compute optimal control moves.
 [mv,nloptions,info] = nlmpcmove(nlobj,xk,mv,yref,[],nloptions);
 % Predict prediction model states for the next iteration.
 predict(EKF, [mv; Ts]);
 % Implement first optimal control move and update plant states.
 x = pendulumDT0(x,mv,Ts);
 % Generate sensor data with some white noise.
 y = x([1 3]) + randn(2,1)*0.01;
 % Save plant states for display.
 xHistory = [xHistory x]; %#ok<*AGROW>
 waitbar(ct*Ts/20,hbar);
end
close(hbar)

Plot the closed-loop response.

figure
subplot(2,2,1)
plot(0:Ts:Duration,xHistory(1,:))
xlabel('time')
ylabel('z')
title('cart position')
subplot(2,2,2)
plot(0:Ts:Duration,xHistory(2,:))
xlabel('time')
ylabel('zdot')
title('cart velocity')
subplot(2,2,3)
plot(0:Ts:Duration,xHistory(3,:))
xlabel('time')
ylabel('theta')
title('pendulum angle')
subplot(2,2,4)
plot(0:Ts:Duration,xHistory(4,:))
xlabel('time')
ylabel('thetadot')
title('pendulum velocity')

 Swing-up Control of a Pendulum Using Nonlinear Model Predictive Control

9-53

The pendulum angle plot shows that the pendulum successfully swings up in two seconds. During
the swing-up process, the cart is displaced with a peak deviation of -1, and returned to its original
position around a time of 2 seconds.

The cart position plot shows that the cart successfully moves to z = 5 in two seconds. While the cart
moves, the pendulum is displaced with a peak deviation of 1 radian (57 degrees) and returned to an
inverted equilibrium position around a time of 12 seconds.

Closed-Loop Simulation with FORCESPRO Solver in MATLAB

You can easily use a third-party nonlinear programming solver together with the nonlinear MPC
object designed using Model Predictive Control Toolbox software. For example, if you have
FORCESPRO software from Embotech installed, you can use their MPC Toolbox Plugin to generate
an efficient custom NLP solver from your nlmpc object and use the solver for simulation and code
generation.

First, generate a custom solver using the nlmpcToForces command. You can choose using either an
Interior-Point (IP) solver or a Sequential Quadratic Programming (SQP) solver using the
nlmpcToForcesOptions command.

options = nlmpcToForcesOptions();
options.SolverName = 'MyIPSolver';
options.SolverType = 'InteriorPoint';
options.Parameter = Ts;
options.x0 = [0;0;-pi;0];
options.mv0 = 0;
[coredata, onlinedata] = nlmpcToForces(nlobj,options);

9 Nonlinear MPC

9-54

The nlmpcToForces function generates a custom MEX function nlmpcmove_MyIPSolver, which
you can use to speed up closed-loop simulation.

x = [0;0;-pi;0];
mv = 0;
EKF.State = x;
y = [x(1);x(3)];
hbar = waitbar(0,'Simulation Progress');
xHistory = x;
for ct = 1:(20/Ts)
 % Set references
 if ct*Ts<10
 onlinedata.ref = repmat(yref1,10,1);
 else
 onlinedata.ref = repmat(yref2,10,1);
 end
 % Correct previous prediction using current measurement.
 xk = correct(EKF, y);
 % Compute optimal control moves using FORCESPRO solver.
 [mv,onlinedata,info] = nlmpcmove_MyIPSolver(xk,mv,onlinedata);
 % Predict prediction model states for the next iteration.
 predict(EKF, [mv; Ts]);
 % Implement first optimal control move and update plant states.
 x = pendulumDT0(x,mv,Ts);
 % Generate sensor data with some white noise.
 y = x([1 3]) + randn(2,1)*0.01;
 % Save plant states for display.
 xHistory = [xHistory x]; %#ok<*AGROW>
 waitbar(ct*Ts/20,hbar);
end
close(hbar)

As expected, the closed-loop response is similar to the one obtained using fmincon as expected.

 Swing-up Control of a Pendulum Using Nonlinear Model Predictive Control

9-55

Closed-Loop Simulation in Simulink

Validate the nonlinear MPC controller with a closed-loop simulation in Simulink.

Open the Simulink model.

mdl = 'mpc_pendcartNMPC';
open_system(mdl)

9 Nonlinear MPC

9-56

In this model, the Nonlinear MPC Controller block is configured to use the previously designed
controller, nlobj.

To use optional parameters in the prediction model, the model has a Simulink Bus block connected to
the params input port of the Nonlinear MPC Controller block. To configure this bus block to use the
Ts parameter, create a Bus object in the MATLAB workspace and configure the Bus Creator block to
use this object. To do so, use the createParameterBus function. In this example, name the Bus
object 'myBusObject'.

createParameterBus(nlobj,[mdl '/Nonlinear MPC Controller'],'myBusObject',{Ts});

A Simulink Bus object "myBusObject" created in the MATLAB Workspace, and Bus Creator block "mpc_pendcartNMPC/Nonlinear MPC Controller" is configured to use it.

Run the simulation for 30 seconds.

open_system([mdl '/Scope'])
sim(mdl)

 Swing-up Control of a Pendulum Using Nonlinear Model Predictive Control

9-57

9 Nonlinear MPC

9-58

The nonlinear simulation in Simulink produces identical swing-up and cart position tracking results
compared to the MATLAB simulation. Also, a push (impulse disturbance dF) is applied to the inverted
pendulum at a time of 20 seconds. The nonlinear MPC controller successfully rejects the disturbance
and returns the cart to z = 5 and the pendulum to an inverted equilibrium position.

Closed-Loop Simulation with FORCESPRO Solver in Simulink

You can also use the FORCES Nonlinear MPC block from the Embotech FORCESPRO software to
simulate the nonlinear MPC using the generated custom NLP solver.

If you have FORCESPRO software installed, open the mpc_pendcartFORCESPRO model and run it to
completion. The closed-loop response is similar to the one using fmincon.

 Swing-up Control of a Pendulum Using Nonlinear Model Predictive Control

9-59

Conclusion

This example illustrates a general workflow to design and simulate nonlinear MPC in MATLAB and
Simulink using an nlmpc object and Nonlinear MPC Controller block, respectively. Depending on the
specific nonlinear plant characteristics and control requirements, the implementation details can vary
significantly. The key design challenges include:

• Choosing proper horizons, bounds, and weights
• Designing a nonlinear state estimator
• Designing a custom nonlinear cost function and constraint function
• Selecting solver options or choosing a custom NLP solver

You can use the functions and Simulink model in this example as templates for other nonlinear MPC
design and simulation tasks.

Both the nlmpcmoveCodeGeneration command from Model Predictive Control Toolbox software
and the nlmpcmoveForces command from FORCESPRO support code generation in MATLAB. Both
the Nonlinear MPC block from Model Predictive Control Toolbox software and FORCES Nonlinear
MPC block from FORCESPRO support code generation in Simulink.

See Also
Nonlinear MPC Controller | nlmpc

More About
• “Nonlinear MPC” on page 9-2

9 Nonlinear MPC

9-60

Nonlinear Model Predictive Control of an Exothermic Chemical
Reactor

This example shows how to use a nonlinear MPC controller to control a nonlinear continuous stirred
tank reactor (CSTR) as it transitions from a low conversion rate to a high conversion rate.

About the Continuous Stirred Tank Reactor

A continuous stirred tank reactor (CSTR) is a common chemical system in the process industry. A
schematic of the CSTR system is:

This system is a jacketed nonadiabatic tank reactor described extensively in [1]. The vessel is
assumed to be perfectly mixed, and a single first-order exothermic and irreversible reaction, A --> B,
takes place. The inlet stream of reagent A is fed to the tank at a constant volumetric rate. The
product stream exits continuously at the same volumetric rate, and liquid density is constant. Thus,
the volume of reacting liquid in the reactor is constant.

The inputs of the CSTR model are:

The outputs (y(t)), which are also the states of the model (x(t)), are:

 Nonlinear Model Predictive Control of an Exothermic Chemical Reactor

9-61

The control objective is to maintain the concentration of reagent A in the exit stream, , at its
desired setpoint, which changes when the reactor transitions from a low conversion rate to a high
conversion rate. The coolant temperature is the manipulated variable used by the controller to
track the reference. The concentration of A in the feed stream and the feed stream temperature are
measured disturbances.

Simulink Model

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink is required to run this example.')
 return
end

Open Simulink model.

mdl = 'mpc_cstr_nonlinear';
open_system(mdl)

Nonlinear Prediction Model

Nonlinear MPC requires a prediction model that describes the nonlinear behavior of your plant to
your best knowledge. To challenge the controller, this example intentionally introduces modeling
errors such that, as the temperature increases, the reaction rate of the prediction model exceeds that
of the true plant. For details of the prediction model state function, see exocstrStateFcnCT.m.

In addition, to reject a random step-like unmeasured disturbance occurring in the concentration in
the exit stream, the plant model is augmented with an integrator whose input is assumed to be zero-
mean white noise. After augmentation, the prediction model has four states (T, CA and Dist) and four
inputs (CA_i, T_i, T_c, WN).

9 Nonlinear MPC

9-62

Since you are only interested in controlling the concentration leaving the reactor, the output function
returns a scalar value, which is the second state (CA) plus the third state (Dist). For details of the
prediction model output function, see exocstrOutputFcn.m.

Nonlinear MPC

The control objective is to move the plant from the initial operating point with a low conversion rate
(CA = 8.5698 kgmol/m^3) to the final operating point with a high conversion rate (CA = 2 kgmol/
m^3). At the final steady state, the plant is open-loop unstable because cooling is no longer self-
regulating. Therefore, the reactor temperature tends to run away from the operating point.

Create a nonlinear MPC controller object in MATLAB®. As mentioned previously, the prediction
model has three states, one output, and four inputs. Among the inputs, the first two inputs (feed
composition and feed temperature) are measured disturbances, the third input (coolant temperature)
is the manipulated variable. The fourth input is the white noise going to the augmented integrator
that represents an unmeasured output disturbance.

nlobj = nlmpc(3, 1,'MV',3,'MD',[1 2],'UD',4);

The prediction model sample time is the same as the controller sample time.

Ts = 0.5;
nlobj.Ts = Ts;

To reduce computational effort, use a short prediction horizon of 3 seconds (6 steps). Also, to increase
robustness, use block moves in the control horizon.

nlobj.PredictionHorizon = 6;
nlobj.ControlHorizon = [2 2 2];

Since the magnitude of the MV is of order 300 and that of the OV is order 1, scale the MV to make
them compatible such that default tuning weights can be used.

nlobj.MV(1).ScaleFactor = 300;

Constrain the coolant temperature adjustment rate, which can only increase or decrease 5 degrees
between two successive intervals.

nlobj.MV(1).RateMin = -5;
nlobj.MV(1).RateMax = 5;

It is good practice to scale the state to be of unit order. Doing so has no effect on the control strategy,
but it can improve numerical behavior.

nlobj.States(1).ScaleFactor = 300;
nlobj.States(2).ScaleFactor = 10;

Specify the nonlinear state and output functions.

nlobj.Model.StateFcn = 'exocstrStateFcnCT';
nlobj.Model.OutputFcn = 'exocstrOutputFcn';

It is best practice to test your prediction model and any other custom functions before using them in
a simulation. To do so, use the validateFcns command. In this case, use the initial operating point
as the nominal condition for testing, setting the unmeasured disturbance state to 0.

 Nonlinear Model Predictive Control of an Exothermic Chemical Reactor

9-63

x0 = [311.2639; 8.5698; 0];
u0 = [10; 298.15; 298.15];
validateFcns(nlobj,x0,u0(3),u0(1:2)');

Model.StateFcn is OK.
Model.OutputFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

Nonlinear State Estimation

The nonlinear MPC controller needs an estimate of three states (including the unmeasured
disturbance state) at every sample time. To provide this estimate, use an Extended Kalman Filter
(EKF) block. This block uses the same model as the nonlinear MPC controller except that the model is
discrete-time. For details, see exocstrStateFcnDT.m.

EKF measures the current concentration and uses it to correct the prediction from the previous
interval. In this example, assume that the measurements are relatively accurate and use small
covariance in the Extended Kalman Filter block.

Closed-Loop Simulation

In the simulation, ramp up the target concentration rather than making an abrupt step change. You
can use a much faster ramp rate because the nonlinear prediction model is used.

During the operating point transition, step changes in the two measured disturbance channels occur
at 10 and 20 seconds, respectively. At time 40, an unmeasured output disturbance (a step change in
the concentration of the reactor exit) occurs as well.

open_system([mdl, '/Concentration (OV)'])
open_system([mdl, '/Coolant Temp (MV)'])
sim(mdl)

9 Nonlinear MPC

9-64

 Nonlinear Model Predictive Control of an Exothermic Chemical Reactor

9-65

The concentration in the exit stream tracks its reference accurately and converges to the desired
final value. Also, the controller rejects both measured disturbances and the unmeasured disturbance.

The initial controller moves are limited by the maximum rate-of-change in the coolant temperature.
This could be improved by providing the controller MPC with a look-ahead reference signal, which
informs the controller of the expected reference variation over the prediction horizon.

References

[1] Seborg, D. E., T. F. Edgar, and D. A. Mellichamp. Process Dynamics and Control, 2nd Edition,
Wiley, 2004, pp. 34-36 and 94-95.

bdclose(mdl)

See Also
Nonlinear MPC Controller | nlmpc

9 Nonlinear MPC

9-66

More About
• “Nonlinear MPC” on page 9-2

 Nonlinear Model Predictive Control of an Exothermic Chemical Reactor

9-67

Optimizing Tuberculosis Treatment Using Nonlinear MPC with a
Custom Solver

This example shows how to find the optimal policy to treat a population with two-strain tuberculosis
(TB) by constructing a nonlinear MPC problem. The nonlinear MPC controller then uses both the
default solver and a custom solver to calculate the optimal solution.

Two-Strain Tuberculosis Model

A two-strain tuberculosis model is introduced in [1]. The model is described as follows:

"In the absence of an effective vaccine, current control programs for TB have focused on
chemotherapy. The antibiotic treatment for an active TB (with drug-sensitive strain) patient requires
a much longer period of time and a higher cost than that for those who are infected with sensitive TB
but have not developed the disease. Lack of compliance with drug treatments not only may lead to a
relapse but to the development of antibiotic resistant TB - one of the most serious public health
problems facing society today. The reduction in cases of drug sensitive TB can be achieved either by
"case holding", which refers to activities and techniques used to ensure regularity of drug intake for a
duration adequate to achieve a cure, or by "case finding", which refers to the identification (through
screening, for example) of individuals latently infected with sensitive TB who are at high risk of
developing the disease and who may benefit from preventive intervention Description of first code
block. These preventive treatments will reduce the incidence (new cases per unit of time) of drug
sensitive TB and hence indirectly reduce the incidence of drug resistant TB."

In the dynamic model used in this example, the total host population N (which is a constant) is divided
into six distinct epidemiological classes. Five of these classes are defined as state variables:

• x(1) = S, number of susceptible individuals
• x(2) = T, number of effectively treated individuals
• x(3) = L2, latent, infected with resistant TB but not infectious
• x(4) = I1, infectious with typical TB
• x(5) = I2, infectious with resistant TB

The sixth class, L1 (latent, infected with typical TB but not infectious) is calculated as N - (S+T
+L2+I1+I2).

You can reduce resistant TB cases using two manipulated variables (MVs):

• u(1) - "case finding", relatively inexpensive effort expended to identify those needing treatment.
• u(2) - "case holding", relatively costly effort to maintain effective treatment.

For more information on the dynamic model, see ResistantTBStateFcn.m.

Nonlinear Control Problem

The goal of TB treatment is to reduce the latent (L2) and infectious (I2) individuals with resistant TB
during a five-year period while keeping the cost low. To achieve this goal, use a cost function that
sums the following value over five years.

F = L2 + I2 + 0.5*B1*u1^2 + 0.5*B2*u2^2

Here, weight B1 is 50, and weight B2 is 500. These weights emphasize a preference for case finding
over case holding due to its cost impact.

9 Nonlinear MPC

9-68

The total population is N = 30000. At the initial condition:

S = 19000 T = 250 L2 = 500 I1 = 1000 I2 = 250

which leaves L1 = 9000.

N = 30000;
x0 = [76; 1; 2; 4; 1]*N/120;

In this example, find the optimal control policy using a nonlinear MPC controller. Create the nlmpc
object with correct numbers of states, outputs, and inputs.

nx = 5;
ny = nx;
nu = 2;
nlobj = nlmpc(nx,ny,nu);

In standard cost function, zero weights are applied by default to one or more OVs because there are fewer MVs than OVs.

Assume that the treatment policy can only be adjusted every three months. Therefore, set the
controller sample time to 0.25 years. Since you want to find the optimal policy over five years, set the
prediction horizon to 20 steps (5 years divided by 0.25).

Years = 5;
Ts = 0.25;
p = Years/Ts;
nlobj.Ts = Ts;
nlobj.PredictionHorizon = p;

For this planning problem, you want to use the maximum number of decision variables. To do so, set
the control horizon equal to the prediction horizon.

nlobj.ControlHorizon = p;

The prediction model is defined in ResistantTBStateFcn.m. Specify this function as the controller
state function.

nlobj.Model.StateFcn = 'ResistantTBStateFcn';

It is best practice to specify analytical Jacobian functions for prediction model and cost/constraint
functions. For details on the Jacobian calculation for the state equations, see
ResistantTBStateJacFcn.m. Set this file as the state Jacobian function.

nlobj.Jacobian.StateFcn = 'ResistantTBStateJacFcn';

Because all the states are numbers of individuals, they must be nonnegative values. Specify a
minimum bound of 0 for all states.

for ct = 1:nx
 nlobj.States(ct).Min = 0;
end

Because there is a large population variation among the groups (states), scale the state variables
using their respective nominal values. Doing so improves the numerical robustness of the
optimization problem.

 Optimizing Tuberculosis Treatment Using Nonlinear MPC with a Custom Solver

9-69

for ct = 1:nx
 nlobj.States(ct).ScaleFactor = x0(ct);
end

Both "finding" and "holding" controls have an operating range between 0.05 and 0.95. Set these
values as the lower and upper bounds for the MVs.

nlobj.MV(1).Min = 0.05;
nlobj.MV(1).Max = 0.95;
nlobj.MV(2).Min = 0.05;
nlobj.MV(2).Max = 0.95;

The cost function, which minimizes the TB population and the treatment cost, is defined in
ResistantTBCostFcn.m. Since this planning problem does not require reference tracking or
disturbance rejection, replace the standard cost using this cost function.

nlobj.Optimization.CustomCostFcn = "ResistantTBCostFcn";
nlobj.Optimization.ReplaceStandardCost = true;

Also, to speed up simulation, the analytical Jacobian of the cost is provided in
ResistantTBCostJacFcn.

nlobj.Jacobian.CustomCostFcn = "ResistantTBCostJacFcn";

Since the L1 population is defined as N minus the sum of all states, you must ensure that (S+T
+L2+I1+I2) - N < 0 is always satisfied. In the nlmpc object, specify this condition as an inequality
constraint using an anonymous function.

nlobj.Optimization.CustomIneqConFcn = @(X,U,e,data) sum(X(2:end,:),2)-30000;

To check for potential numerical issues, validate your prediction model, custom functions, and
Jacobians using the validateFcns command.

validateFcns(nlobj,x0,[0.5;0.5])

Model.StateFcn is OK.
Jacobian.StateFcn is OK.
No output function specified. Assuming "y = x" in the prediction model.
Optimization.CustomCostFcn is OK.
Jacobian.CustomCostFcn is OK.
Optimization.CustomIneqConFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

To compute the optimal control policy, use the nlmpcmove function. At the initial condition, the MVs
are zero. By default, fmincon from the Optimization Toolbox™ is used as the default NLP solver.

lastMV = zeros(nu,1);
[~,~,Info] = nlmpcmove(nlobj,x0,lastMV);

Slack variable unused or zero-weighted in your custom cost function. All constraints will be hard.

Plot and examine the optimal solution.

ResistantTBPlot(Info,Ts)

Optimal cost = 5194.8
Final L2 = 175.9
Final I2 = 862.9

9 Nonlinear MPC

9-70

 Optimizing Tuberculosis Treatment Using Nonlinear MPC with a Custom Solver

9-71

The optimal solution yields a cost of 5195, and the total number of individuals infected with resistant
TB at the final time is L2 + I2 = 1037.

Find Optimal Treatment Using Custom Nonlinear Programming Solver

If you want to use a third-party NLP solver in the simulation, write an interface file that converts the
inputs defined by nlmpc into the inputs defined by your NLP solver, and specify it as the
CustomSolverFcn in the nlmpc object.

In this example, assume that you have an "XYZ" solver that has a different user interface than
fmincon. A ResistantTBSolver.m file is created to convert the optimization problem defined by
nlmpc object to the proper interface required by the "XYZ" solver. Review the
ResistantTBSolver.m.

function [zopt,cost,exitflag] = ResistantTBSolver(FUN,z0,A,b,Aeq,beq,lb,ub,NONLINCON)
% This is an interface function that calls a XYZ nonlinear programming
% solver to solve an NLP problem defined by an nlmpc controller. The
% input and output definitions of this function are identical to fmincon.
%
% This interface function converts fmincon inputs to the format required
% by the XYZ solver and converts the results back to the fmincon outputs.
%
% Inputs
% FUN: nonlinear cost. FUN accepts input z (decision variabls) and
% returns cost f (a scalar value evaluated at z) and its
% gradient g (a nz-by-1 vector evaluated at z).

9 Nonlinear MPC

9-72

% z0: initial guess of z
% A,b: A*z<=b
% Aeq,beq: Aeq*z==beq
% lb,ub: lower and upper bounds of z
% NONLINCON: nonlinear constraints. NONLINCON accepts input z and returns
% the vectors C and Ceq as the first two outputs, representing
% the nonlinear inequalities and equalities respectively where
% FUN is minimized subject to C(z) <= 0 and Ceq(z) = 0.
% NONLINCON also returns Jacobian matrices of C (a nz-by-ncin
% sparse matrix) and Ceq (a nz-by-nceq sparse matrix).
%
% Outputs
% zopt: optimal solution of z
% cost: optimal cost at optimal z
% exitflag:
% 1 First order optimality conditions satisfied.
% 0 Too many function evaluations or iterations.
% -1 Stopped by output/plot function.
% -2 No feasible point found.
%
% You can use this example as a template to implement an interface file to
% your own NLP solver. The solver must be an M file or a MEX file on the
% MATLAB path.
%
% DO NOT EDIT LINES ABOVE.
%
% Copyright 2018 The MathWorks, Inc.

%% Set dimensional information of linear and nonlinear constraints
num_lin_ineq = size(A,1);
num_lin_eq = size(Aeq,1);
[in,eq] = NONLINCON(z0);
num_non_ineq = length(in);
num_non_eq = length(eq);
total = num_non_ineq + num_non_eq + num_lin_ineq + num_lin_eq;
logicals_nlineq = false(total,1);
logicals_nlineq(1:num_non_ineq) = true;
logicals_nleq = false(total,1);
logicals_nleq(num_non_ineq+(1:num_non_eq)) = true;
logicals_ineq = false(total,1);
logicals_ineq(num_non_ineq+num_non_eq+(1:num_lin_ineq)) = true;
logicals_eq = false(total,1);
logicals_eq(num_non_ineq+num_non_eq+num_lin_ineq+(1:num_lin_eq)) = true;
options = struct('nlineq',logicals_nlineq,'nleq',logicals_nleq,...
 'ineq',logicals_ineq,'eq',logicals_eq);
%% Set decision variable bounds
options.lb = lb;
options.ub = ub;
%% Set RHS of nonlinear constraints
options.cl = [-inf(num_non_ineq,1);zeros(num_non_eq,1)];
options.cu = [zeros(num_non_ineq,1);zeros(num_non_eq,1)];
%% Set RHS of linear constraints
options.rl = [-inf(num_lin_ineq,1);beq];
options.ru = [b;beq];
%% Set A matrix
options.A = sparse([A; Aeq]);
%% Set XYZ solver optons
options.algorithm = struct('print_level',0,'max_iter',200,...

 Optimizing Tuberculosis Treatment Using Nonlinear MPC with a Custom Solver

9-73

 'max_cpu_time',1000,'tol',1.0000e-06,...
 'hessian_approximation','limited-memory');
%% Set function handles used by XYZ solver
Jstr = sparse(ones(num_non_ineq+num_non_eq,length(z0)));
funcs = struct('objective',@(x) fval(FUN,x),...
 'gradient',@(x) gval(FUN,x),...
 'constraints',@(x) conval(NONLINCON,x),...
 'jacobian',@(x) jacval(NONLINCON,x),...
 'jacobianstructure',@() Jstr...
);
%% Call XYZ and return cost and status
[zopt,output] = XYZsolver(z0,funcs,options);
cost = FUN(zopt);
exitflag = convertStatustoExitflag(output.status);

%% Utility functions
function f = fval(fun,z)
% Return nonlinear cost
[f,~] = fun(z);

function g = gval(fun,z)
% Return cost gradient
[~,g] = fun(z);

function c = conval(nonlcon,z)
% Return nonlinear constraints
[in,eq] = nonlcon(z);
c = [in;eq];

function J = jacval(nonlcon,z)
% Return constraints Jacobian as nc-by-nz in sparse matrix
% Jin is nz-by-ncin sparse, Jeq is nz-by-nceq sparse
[~,~,Jin,Jeq] = nonlcon(z);
J = [Jin Jeq]';

function exitflag = convertStatustoExitflag(status)
switch(status)
 case 0
 %info.Status = 'Success';
 exitflag = 1;
 case 1
 %info.Status = 'Solved to Acceptable Level';
 exitflag = 1;
 case 2
 %info.Status = 'Infeasible';
 exitflag = -1;
 case 3
 %info.Status = 'Search Direction Becomes Too Small';
 exitflag = -2;
 case 4
 %info.Status = 'Diverging Iterates';
 exitflag = -2;
 case 6
 %info.Status = 'Feasible Point Found';
 exitflag = 1;
 case -1
 %info.Status = 'Exceeded Iterations';
 exitflag = 0;

9 Nonlinear MPC

9-74

 case -4
 %info.Status = 'Max Time Exceeded';
 exitflag = 0;
 otherwise
 %info.Status = 'IPOPT Error';
 exitflag = -2;
end

You can use this file as a template to implement an interface file to your own NLP solver. The solver
must be a MATLAB script or MEX file on the MATLAB path.

You can plug in the solver by specifying it as the custom solver in the nlmpc object.

nlobj.Optimization.CustomSolverFcn = @ResistantTBSolver;

As long as the "XYZ" solver is reliable and its options are properly chosen, rerunning the simulation
should produce similar results.

References

[1] Jung, E., S. Lenhart, and Z. Feng. "Optimal Control of Treatments in a Two-Strain Tuberculosis
Model." Discrete and Continuous Dynamical Systems, Series B2, 2002, pp. 479-482.

See Also
Nonlinear MPC Controller | nlmpc

More About
• “Nonlinear MPC” on page 9-2
• “Configure Optimization Solver for Nonlinear MPC” on page 9-27

 Optimizing Tuberculosis Treatment Using Nonlinear MPC with a Custom Solver

9-75

Nonlinear and Gain-Scheduled MPC Control of an Ethylene
Oxidation Plant

This example shows how to use a nonlinear model predictive controller to control an ethylene
oxidation plant as it transitions from one operating point to another. In addition, linear MPC
controllers are generated directly from the nonlinear MPC controller to implement a gain-scheduled
control scheme that produces comparable performance.

Ethylene Oxidation Plant

Oxidation of ethylene (C2H4) to ethylene oxide (C2H4O) occurs in a cooled, gas-phase catalytic
reactor. Three reactions occur simultaneously in the well-mixed gas phase within the reactor:

C2H4 + 0.5*O2 -> C2H4O

C2H4 + 3*O2 -> 2*CO2 + 2*H2O

C2H4O + 2.5*O2 -> 2*CO2 + 2*H2O

A mixture of air and ethylene is fed continuously. The plant is described by a first-principle nonlinear
dynamic model, implemented as a set of ordinary differential equations (ODEs) in the
oxidationStateFcn function. For more information, see oxidationStateFcn.m.

The plant contains four states:

• Gas density in the reactor (x1)
• C2H4 concentration in the reactor (x2)
• C2H4O concentration in the reactor (x3)
• Temperature in the reactor (x4)

The plant has two inputs:

• Total volumetric feed flow rate (u1)
• C2H4 concentration of the feed (u2)

The plant has one output:

• C2H4O concentration in the effluent flow (y, equivalent to x3)

For convenience, all variables in the model are pre-scaled to be dimensionless. All the states are
measurable. The plant equations and parameters are obtained from [1].

Control Objectives

In this example, the total volumetric feed flow rate (u1) is the manipulated variable (MV) and C2H4O
concentration in the effluent flow (y) is the output variable (OV). Good tracking performance of y is
required within an operating range from 0.03 to 0.05. The corresponding u1 values are 0.38 and
0.15, respectively.

The C2H4 concentration in the feed flow (u2) is a measured disturbance. Its nominal value is 0.5,
and a typical disturbance has a size of 0.1. The controller is required to reject such a disturbance.

The manipulated variable u1 has a range from 0.0704 to 0.7042 due to actuator limitations.

9 Nonlinear MPC

9-76

Feedback Control with Nonlinear MPC

In general, using nonlinear MPC with an accurate nonlinear prediction model provides a benchmark
performance; that is, the best control solution you can achieve. However, in practice, linear MPC
control solutions, such as adaptive MPC or gain-scheduled MPC, are more computationally efficient
than nonlinear MPC. If your linear control solution can deliver a comparable performance, there is no
need to implement the nonlinear control solution, especially in a real-time environment.

In this example, you first design a nonlinear MPC controller to obtain the benchmark performance.
Afterward, you generate several linear MPC objects from the nonlinear controller at different
operating point using the convertToMPC function. Finally, you implement gain-scheduled MPC using
these linear MPC objects and compare the performance.

Create a nonlinear MPC controller with 4 states, 1 output, 1 manipulated variable, and 1 measured
disturbance.

nlobj = nlmpc(4,1,'MV',1,'MD',2);

Specify the controller sample time and the prediction and control horizons.

Ts = 5;
PredictionHorizon = 10;
ControlHorizon = 3;
nlobj.Ts = Ts;
nlobj.PredictionHorizon = PredictionHorizon;
nlobj.ControlHorizon = ControlHorizon;

Specify the nonlinear prediction model using oxidationStateFcn.m, which is a continuous-time
model.

nlobj.Model.StateFcn = 'oxidationStateFcn';
nlobj.States(1).Name = 'Den';
nlobj.States(2).Name = 'CE';
nlobj.States(3).Name = 'CEO';
nlobj.States(4).Name = 'Tc';

Specify the output function that returns the C2H4O concentration in the effluent flow (same as x3).
Its scale factor is its typical operating range.

nlobj.Model.OutputFcn = @(x,u) x(3);
nlobj.OV.Name = 'CEOout';
nlobj.OV.ScaleFactor = 0.03;

Specify the MV constraints based on the controller actuator limitations. Its scale factor is its typical
operating range.

nlobj.MV.Min = 0.0704;
nlobj.MV.Max = 0.7042;
nlobj.MV.Name = 'Qin';
nlobj.MV.ScaleFactor = 0.6;

Specify the measured disturbance name. Its scale factor is its typical operating range.

nlobj.MD.Name = 'CEin';
nlobj.MD.ScaleFactor = 0.5;

 Nonlinear and Gain-Scheduled MPC Control of an Ethylene Oxidation Plant

9-77

Initially the plant is at an equilibrium operating point with a low concentration of C2H4O (y = 0.03)
in the effluent flow. Find the initial values of the states and output using fsolve from the
Optimization Toolbox.

options = optimoptions('fsolve','Display','none');
uLow = [0.38 0.5];
xLow = fsolve(@(x) oxidationStateFcn(x,uLow),[1 0.3 0.03 1],options);
yLow = xLow(3);

Validate that the prediction model functions do not have any numerical issues using the
validateFcns command. Validate the functions at the initial state and output values.

validateFcns(nlobj,xLow,uLow(1),uLow(2));

Model.StateFcn is OK.
Model.OutputFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

Specify the reference signal in a structure, where it ramps up from 0.03 to 0.05 in 50 seconds at
time 100.

Tstop = 300;
time = (0:Ts:(Tstop+PredictionHorizon*Ts))';
r = [yLow*ones(sum(time<100),1);linspace(yLow,yLow+0.02,11)';(yLow+0.02)*ones(sum(time>150),1)];
ref.time = time;
ref.signals.values = r;

To assess nonlinear MPC performance, use a Simulink model. The Nonlinear MPC Controller block in
the model is configured to use nlobj as its controller.

mdlNMPC = 'oxidationNMPC';
open_system(mdlNMPC)

9 Nonlinear MPC

9-78

Run the simulation, and view the output.

sim(mdlNMPC)
open_system([mdlNMPC '/y'])

The nonlinear MPC controller produces good reference tracking and disturbance rejection
performance, as expected.

Although a ramp-like set-point change in C2H4O concentration occurs between 100 and 150 seconds
(the yellow stair curve in the plot), the controller knows about the change as early as at 50 seconds
because of reference previewing. Since the objective is to minimize tracking errors across the whole
horizon, the controller decides to move the plant in advance such that tracking error is the smallest
across the prediction horizon. If previewing is disabled, the controller would start reacting at 100
seconds, which would produce a larger tracking error.

 Nonlinear and Gain-Scheduled MPC Control of an Ethylene Oxidation Plant

9-79

In this example, since all the states are measurable, full state feedback is used by the nonlinear MPC
controller. In general, when there are unmeasurable states, you must design a nonlinear state
estimator, such as an extended Kalman filter (EKF) or a moving horizon estimator (MHE).

Obtain Linear MPC Controllers from Nonlinear MPC Controller

In practice, when producing comparable performance, linear MPC is always preferred over nonlinear
MPC due to its higher computation efficiency. Since you designed a nonlinear MPC controller as a
benchmark, you can convert it into a linear MPC controller at a specific operating point.

In this example, you generate three linear MPC controllers with C2H4O concentrations at 0.03,
0.04, and 0.05, respectively. During the conversion, the nonlinear plant model is linearized at the
specified operating point. All the scale factors, linear constraints, and quadratic weights defined in
the nonlinear MPC object are retained. However, any custom nonlinear cost function or custom
nonlinear equality or inequality constraints are discarded.

Generate a linear MPC controller at an operating point with low C2H4O conversion rate y = 0.03.
Specify the operating point using the corresponding state and input values, xLow and uLow,
respectively.

mpcobjLow = convertToMPC(nlobj,xLow,uLow);

Generate a linear MPC controller at an operating point with medium C2H4O conversion rate y =
0.04.

uMedium = [0.24 0.5];
xMedium = fsolve(@(x) oxidationStateFcn(x,uMedium),[1 0.3 0.03 1],options);
mpcobjMedium = convertToMPC(nlobj,xMedium,uMedium);

Generate a linear MPC controller at an operating point with high C2H4O conversion rate y = 0.05.

uHigh = [0.15 0.5];
xHigh = fsolve(@(x) oxidationStateFcn(x,uHigh),[1 0.3 0.03 1],options);
mpcobjHigh = convertToMPC(nlobj,xHigh,uHigh);

Feedback Control with Gain-Scheduled MPC

Implement a gain-scheduled MPC solution using the three generated linear MPC controllers. The
scheduling scheme is:

• If y is lower than 0.035, use mpcobjLow.
• If y is higher than 0.045, use mpcobjHigh.
• Otherwise, use mpcobjMedium.

To assess the gain-scheduled controller performance, use another Simulink model.

mdlMPC = 'oxidationMPC';
open_system(mdlMPC)

9 Nonlinear MPC

9-80

Run the simulation, and view the output.

sim(mdlMPC)
open_system([mdlMPC '/y'])

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.
-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.
-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.
-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Nonlinear and Gain-Scheduled MPC Control of an Ethylene Oxidation Plant

9-81

The gain-scheduled controller produces comparable reference tracking and disturbance rejection
performance.

Conclusion

This example illustrates a general workflow to:

• Design and simulate a nonlinear MPC controller in MATLAB and Simulink for a benchmark control
performance.

• Use the nonlinear MPC object to directly generate linear MPC controllers at desired operating
points.

• Implement a gain-scheduled MPC control scheme using these controllers.

If the performance of the gain-scheduled controller is comparable to that of the nonlinear controller,
you can feel confident implementing a linear control solution to a nonlinear control problem.

Close the Simulink model.

9 Nonlinear MPC

9-82

bdclose(mdlNMPC)

References

[1] H. Durand, M. Ellis, P. D. Christofides. "Economic model predictive control designs for input rate-
of-change constraint handling and guaranteed economic performance." Computers and Chemical
Engineering, Vol. 92, 2016, pp. 18-36.

See Also
Nonlinear MPC Controller | nlmpc

More About
• “Nonlinear MPC” on page 9-2

 Nonlinear and Gain-Scheduled MPC Control of an Ethylene Oxidation Plant

9-83

Optimization and Control of a Fed-Batch Reactor Using
Nonlinear MPC

This example shows how to use nonlinear model predictive control to optimize batch reactor
operation. The example also shows how to run a nonlinear MPC controller as an adaptive MPC
controller and a time-varying MPC controller to quickly compare their performance.

Fed-Batch Chemical Reactor

The following irreversible and exothermic reactions occur in the batch reactor [1]:

A + B => C (desired product)
C => D (undesired product)

The batch begins with the reactor partially filled with known concentrations of reactants A and B. The
batch reacts for 0.5 hours, during which additional B can be added and the reactor temperature can
be changed.

The nonlinear model of the batch reactor is defined in the fedbatch_StateFcn and
fedbatch_OutputFcn functions. This system has the following inputs, states, and outputs.

Manipulated Variables

• u1 = u_B, flow rate of B feed
• u2 = Tsp, reactor temperature setpoint, deg C

Measured disturbance

• u3 = c_Bin, concentration of B in the B feed flow

States

• x1 = V*c_A, mol of A in the reactor
• x2 = V*(c_A + c_C), mol of A + C in the reactor
• x3 = V, liquid volume in the reactor
• x4 = T, reactor temperature, K

Outputs

• y1 = V*c_C, amount of product C in the reactor, equivalent to x2-x1
• y2 = q_r, heat removal rate, a nonlinear function of the states
• y3 = V, liquid volume in reactor

The goal is to maximize the production of C (y1) at the end of the batch process. During the batch
process, the following operating constraints must be satisfied:

1 Hard upper bound on heat removal rate (y2). Otherwise, temperature control fails.
2 Hard upper bound on liquid volume in reactor (y3) for safety.
3 Hard upper and lower bounds on B feed rate (u_B).
4 Hard upper and lower bounds on reactor temperature setpoint (Tsp).

Specify the nominal operating condition at the beginning of the batch process.

9 Nonlinear MPC

9-84

c_A0 = 10;
c_B0 = 1.167;
c_C0 = 0;
V0 = 1;
T0 = 50 + 273.15;
c_Bin = 20;

Specify the nominal states.

x0 = zeros(3,1);
x0(1) = c_A0*V0;
x0(2) = x0(1) + c_C0*V0;
x0(3) = V0;
x0(4) = T0;

Specify the nominal inputs.

u0 = zeros(3,1);
u0(2) = 40;
u0(3) = c_Bin;

Specify the nominal outputs.

y0 = fedbatch_OutputFcn(x0,u0);

Nonlinear MPC Design to Optimize Batch Operation

Create a nonlinear MPC object with 4 states, 3 outputs, 2 manipulated variables, and 1 measured
disturbance.

nlmpcobj_Plan = nlmpc(4, 3, 'MV', [1,2], 'MD', 3);

In standard cost function, zero weights are applied by default to one or more OVs because there are fewer MVs than OVs.

Given the expected batch duration Tf, choose the controller sample time Ts and prediction horizon.

Tf = 0.5;
N = 50;
Ts = Tf/N;
nlmpcobj_Plan.Ts = Ts;
nlmpcobj_Plan.PredictionHorizon = N;

If you set the control horizon equal to the prediction horizon, there will be 50 free control moves,
which leads to a total of 100 decision variables because the plant has two manipulated variables. To
reduce the number of decision variables, you can specify control horizon using blocking moves.
Divide the prediction horizon into 8 blocks, which represents 8 free control moves. Each of the first
seven blocks lasts seven prediction steps. Doing so reduces the number of decision variables to 16.

nlmpcobj_Plan.ControlHorizon = [7 7 7 7 7 7 7 1];

Specify the nonlinear model in the controller. The function fedbatch_StateFcnDT converts the
continuous-time model to discrete time using a multi-step Forward Euler integration formula.

nlmpcobj_Plan.Model.StateFcn = @(x,u) fedbatch_StateFcnDT(x,u,Ts);
nlmpcobj_Plan.Model.OutputFcn = @(x,u) fedbatch_OutputFcn(x,u);
nlmpcobj_Plan.Model.IsContinuousTime = false;

Specify the bounds for feed rate of B.

 Optimization and Control of a Fed-Batch Reactor Using Nonlinear MPC

9-85

nlmpcobj_Plan.MV(1).Min = 0;
nlmpcobj_Plan.MV(1).Max = 1;

Specify the bounds for the reactor temperature setpoint.

nlmpcobj_Plan.MV(2).Min = 20;
nlmpcobj_Plan.MV(2).Max = 50;

Specify the upper bound for the heat removal rate. The true constraint is 1.5e5. Since nonlinear
MPC can only enforce constraints at the sampling instants, use a safety margin of 0.05e5 to prevent
a constraint violation between sampling instants.

nlmpcobj_Plan.OV(2).Max = 1.45e5;

Specify the upper bound for the liquid volume in the reactor.

nlmpcobj_Plan.OV(3).Max = 1.1;

Since the goal is to maximize y1, the amount of C in the reactor at the end of the batch time, specify a
custom cost function that replaces the default quadratic cost. Since y1 = x2-x1, define the custom
cost to be minimized as x1-x2 using an anonymous function.

nlmpcobj_Plan.Optimization.CustomCostFcn = @(X,U,e,data) X(end,1)-X(end,2);
nlmpcobj_Plan.Optimization.ReplaceStandardCost = true;

To configure the manipulated variables to vary linearly with time within each block, select piecewise
linear interpolation. By default, nonlinear MPC keeps manipulated variables constant within each
block, using piecewise constant interpolation, which might be too restrictive for an optimal trajectory
planning problem.

nlmpcobj_Plan.Optimization.MVInterpolationOrder = 1;

Use the default nonlinear programming solver fmincon to solve the nonlinear MPC problem. For this
example, set the solver step tolerance to help achieve first order optimality.

nlmpcobj_Plan.Optimization.SolverOptions.StepTolerance = 1e-8;

Before carrying out optimization, check whether all the custom functions satisfy NLMPC
requirements using the validateFcns command.

validateFcns(nlmpcobj_Plan, x0, u0(1:2), u0(3));

Model.StateFcn is OK.
Model.OutputFcn is OK.
Optimization.CustomCostFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

Analysis of Optimization Results

Find the optimal trajectories for the manipulated variables such that production of C is maximized at
the end of the batch process. To do so, use the nlmpcmove function.

fprintf('\nOptimization started...\n');
[~,~,Info] = nlmpcmove(nlmpcobj_Plan,x0,u0(1:2),zeros(1,3),u0(3));
fprintf(' Expected production of C (y1) is %g moles.\n',Info.Yopt(end,1));
fprintf(' First order optimality is satisfied (Info.ExitFlag = %i).\n',...
 Info.ExitFlag);
fprintf('Optimization finished...\n');

9 Nonlinear MPC

9-86

Optimization started...
Slack variable unused or zero-weighted in your custom cost function. All constraints will be hard.
 Expected production of C (y1) is 2.02353 moles.
 First order optimality is satisfied (Info.ExitFlag = 1).
Optimization finished...

The discretized model uses a simple Euler integration, which could be inaccurate. To check this,
integrate the model using the ode15s command for the calculated optimal MV trajectory.

Nstep = size(Info.Xopt,1) - 1;
t = 0;
X = x0';
t0 = 0;
for i = 1:Nstep
 u_in = [Info.MVopt(i,1:2)'; c_Bin];
 ODEFUN = @(t,x) fedbatch_StateFcn(x, u_in);
 TSPAN = [t0, t0+Ts];
 Y0 = X(end,:)';
 [TOUT,YOUT] = ode15s(ODEFUN,TSPAN,Y0);
 t = [t; TOUT(2:end)];
 X = [X; YOUT(2:end,:)];
 t0 = t0 + Ts;
end
nx = size(X,1);
Y = zeros(nx,3);
for i = 1:nx
 Y(i,:) = fedbatch_OutputFcn(X(i,:)',u_in)';
end
fprintf('\n Actual Production of C (y1) is %g moles.\n',X(end,2)-X(end,1));
fprintf(' Heat removal rate (y2) satisfies the upper bound.\n');

 Actual Production of C (y1) is 2.0228 moles.
 Heat removal rate (y2) satisfies the upper bound.

In the top plot of the following figure, the actual production of C agrees with the expected production
of C calculated from nlmpcmove. In the bottom plot, the heat removal rate never exceeds its hard
constraint.

figure
subplot(2,1,1)
plot(t,Y(:,1),(0:Nstep)*Ts, Info.Yopt(:,1),'*')
axis([0 0.5 0 Y(end,1) + 0.1])
legend({'Actual','Expected'},'location','northwest')
title('Mol C in reactor (y1)')
subplot(2,1,2)
tTs = (0:Nstep)*Ts;
t(end) = 0.5;
plot(t,Y(:,2),'-',[0 tTs(end)],1.5e5*ones(1,2),'r--')
axis([0 0.5 0.8e5, 1.6e5])
legend({'q_r','Upper Bound'},'location','southwest')
title('Heat removal rate (y2)')

 Optimization and Control of a Fed-Batch Reactor Using Nonlinear MPC

9-87

Close examination of the heat removal rate shows that it can exhibit peaks and valleys between the
sampling instants as reactant compositions change. Consequently, the heat removal rate exceeds the
specified maximum of 1.45e5 (around t = 0.35 h) but stays below the true maximum of 1.5e5.

The following figure shows the optimal trajectory of planned adjustments in the B feed rate (u1), and
the reactor temperature (x4) and its setpoint (u2).

figure
subplot(2,1,1)
stairs(tTs,Info.MVopt(:,1))
title('Feed rate of B (u1)')
subplot(2,1,2)
plot(tTs,Info.MVopt(:,2),'*',t,X(:,4)-273.15,'-',...
 [0 0.5],[20 20],'r--',[0 0.5],[50 50],'r--')
axis([0 0.5 15 55])
title('Reactor temperature and its setpoint')
legend({'Setpoint','Actual'},'location','southeast')

9 Nonlinear MPC

9-88

The trajectory begins with a relatively high feed rate, which increases c_B and the resulting C
production rate. To prevent exceeding the heat removal rate constraint, reactor temperature and feed
rate must decrease. The temperature eventually hits its lower bound and stays there until the reactor
is nearly full and the B feed rate must go to zero. The temperature then increases to its maximum (to
increase C production) and finally drops slightly (to reduce D production, which is favored at higher
temperatures).

The top plot of the following figure shows the consumption of c_A, which tends to reduce C
production. To compensate, the plan first increases c_B, and when that is no longer possible (the
reactor liquid volume must not exceed 1.1), the plan makes optimal use of the temperature. In the
bottom plot of the following figure, the liquid volume never exceeds its upper bound.

figure
subplot(2,1,1)
c_A = X(:,1)./X(:,3);
c_B = (c_Bin*X(:,3) + X(:,1) + V0*(c_B0 - c_A0 - c_Bin))./X(:,3);
plot(t,[c_A, c_B])
legend({'c_A','c_B'}, 'location', 'west')
subplot(2,1,2)
plot(tTs,Info.Yopt(:,3))
title('Liquid volume')

 Optimization and Control of a Fed-Batch Reactor Using Nonlinear MPC

9-89

Nonlinear MPC Design for Tracking the Optimal C Product Trajectory

To track the optimal trajectory of product C calculated above, you design another nonlinear MPC
controller with the same prediction model and constraints. However, use the standard quadratic cost
and default horizons for tracking purposes.

To simplify the control task, assume that the optimal trajectory of the B feed rate is implemented in
the plant and the tracking controller considers it to be a measured disturbance. Therefore, the
controller uses the reactor temperature setpoint as its only manipulated variable to track the desired
y1 profile.

Create the tracking controller.

nlmpcobj_Tracking = nlmpc(4,3,'MV',2,'MD',[1,3]);
nlmpcobj_Tracking.Ts = Ts;
nlmpcobj_Tracking.Model = nlmpcobj_Plan.Model;
nlmpcobj_Tracking.MV = nlmpcobj_Plan.MV(2);
nlmpcobj_Tracking.OV = nlmpcobj_Plan.OV;
nlmpcobj_Tracking.Weights.OutputVariables = [1 0 0]; % track y1 only
nlmpcobj_Tracking.Weights.ManipulatedVariablesRate = 1e-6; % agressive MV

In standard cost function, zero weights are applied by default to one or more OVs because there are fewer MVs than OVs.

Obtain the C production (y1) reference signal from the optimal plan trajectory.

Cref = Info.Yopt(:,1);

9 Nonlinear MPC

9-90

Obtain the feed rate of B (u1) from the optimal plan trajectory. The feed concentration of B (u3) is a
constant.

MD = [Info.MVopt(:,1) c_Bin*ones(N+1,1)];

First, run the tracking controller in nonlinear MPC mode.

[X1,Y1,MV1,et1] = fedbatch_Track(nlmpcobj_Tracking,x0,u0(2),N,Cref,MD);
fprintf('\nNonlinear MPC: Elapsed time = %g sec. Production of C = %g mol\n',et1,Y1(end,1));

Nonlinear MPC: Elapsed time = 3.65202 sec. Production of C = 2.01131 mol

Second, run the controller as an adaptive MPC controller.

nlmpcobj_Tracking.Optimization.RunAsLinearMPC = 'Adaptive';
[X2,Y2,MV2,et2] = fedbatch_Track(nlmpcobj_Tracking,x0,u0(2),N,Cref,MD);
fprintf('\nAdaptive MPC: Elapsed time = %g sec. Production of C = %g mol\n',et2,Y2(end,1));

Adaptive MPC: Elapsed time = 2.43837 sec. Production of C = 2.01567 mol

Third, run the controller as a time-varying MPC controller.

nlmpcobj_Tracking.Optimization.RunAsLinearMPC = 'TimeVarying';
[X3,Y3,MV3,et3] = fedbatch_Track(nlmpcobj_Tracking,x0,u0(2),N,Cref,MD);
fprintf('\nTime-varying MPC: Elapsed time = %g sec. Production of C = %g mol\n',et3,Y3(end,1));

Time-varying MPC: Elapsed time = 2.04578 sec. Production of C = 2.02349 mol

In the majority of MPC applications, linear MPC solutions, such as Adaptive MPC and Time-varying
MPC, provide performance that is comparable to the nonlinear MPC solution, while consuming less
resources and executing faster. In these cases, nonlinear MPC often represents the best control
results that MPC can achieve. By running a nonlinear MPC controller as a linear MPC controller, you
can assess whether implementing a linear MPC solution is good enough in practice.

In this example, all three methods come close to the optimal C production obtained in the planning
stage.

figure
plot(Ts*(0:N),[Y1(:,1) Y2(:,1) Y3(:,1)])
title('Production of C')
legend({'NLMPC','Adaptive','TimeVarying'},'location','northwest')

 Optimization and Control of a Fed-Batch Reactor Using Nonlinear MPC

9-91

The unexpected result is that time-varying MPC produces more C than nonlinear MPC. The
explanation is that the model linearization approaches used in the adaptive and time-varying modes
result in a violation of the heat removal constraint, which results in a higher C production.

figure
plot(Ts*(0:N),[Y1(:,2) Y2(:,2) Y3(:,2) 1.5e5*ones(N+1,1)])
title('Heat removal rate')
legend({'NLMPC','Adaptive','TimeVarying','Constraint'},'location','southwest')

9 Nonlinear MPC

9-92

The adaptive MPC mode uses the plant states and inputs at the beginning of each control interval to
obtain a single linear prediction model. This approach does not account for the known future changes
in the feed rate, for example.

The time-varying method avoids this issue. However, at the start of the batch it assumes (by default)
that the states will remain constant over the horizon. It corrects for this once it obtains its first
solution (using data in the opts variable), but its initial choice of reactor temperature is too high,
resulting in an early q_r constraint violation.

References

[1] Srinivasan, B., S. Palanki, and D. Bonvin, "Dynamic optimization of batch processes I.
Characterization of the nominal solution", Computers and Chemical Engineering, vol. 27 (2003), pp.
1-26.

See Also
nlmpc

More About
• “Nonlinear MPC” on page 9-2
• “Adaptive MPC” on page 7-2
• “Time-Varying MPC” on page 7-49

 Optimization and Control of a Fed-Batch Reactor Using Nonlinear MPC

9-93

Lane Following Using Nonlinear Model Predictive Control
This example shows how to design a lane-following controller using the Nonlinear Model Predictive
Controller block. In this example, you:

1 Design a nonlinear MPC controller (NLMPC) for lane following.
2 Compare the performance of NLMPC with adaptive MPC.

Introduction

A lane-following system is a control system that keeps the vehicle traveling along the centerline of a
highway lane, while maintaining a user-set velocity. The lane-following scenario is depicted in the
following figure.

A lane-following system manipulates both the longitudinal acceleration and front steering angle of the
vehicle to:

• Keep the lateral deviation and relative yaw angle small.
• Keep the longitudinal velocity close to a driver set velocity.
• Balance the above two goals when they cannot be met simultaneously.

In a separate example of lane keeping assist, it is assumed that the longitudinal velocity is constant.
For more information, see “Lane Keeping Assist System Using Model Predictive Control” on page 11-
28. This restriction is relaxed in this example because the longitudinal acceleration varies in this
MIMO control system.

Another example augments a lane-following system with spacing control, where a safe distance from
a detected lead car is also maintained. For more information, see “Lane Following Control with
Sensor Fusion and Lane Detection” on page 11-51.

Overview of Simulink Model

Open the Simulink model.

9 Nonlinear MPC

9-94

mdl = 'LaneFollowingNMPC';
open_system(mdl)

This model contains four main components:

1 Vehicle Dynamics: Apply the bicycle mode of lateral vehicle dynamics, and approximate the
longitudinal dynamics using a time constant .

2 Sensor Dynamics: Approximate a sensor such as a camera to calculate the lateral deviation and
relative yaw angle.

3 Lane Following Controller: Simulate nonlinear MPC and adaptive MPC.
4 Curvature Previewer: Detect the curvature at the current time step and the curvature sequence

over the prediction horizon of the MPC controller.

The vehicle dynamics and sensor dynamics are discussed in more details in “Adaptive Cruise Control
with Sensor Fusion” on page 11-10. This example applies the same model for vehicle and sensor
dynamics.

Parameters of Vehicle Dynamics and Road Curvature

The necessary Vehicle Dynamics and Road Curvature parameters are defined using the
LaneFollowingUsingNMPCData script which is a PreLoadFcn callback of the model.

Design Nonlinear Model Predictive Controller

The continuous-time prediction model for NLMPC has the following state and output equations. The
state equations are defined in LaneFollowingStateFcn.

 Lane Following Using Nonlinear Model Predictive Control

9-95

The prediction model includes an unmeasured disturbance (UD) model. The UD model describes what
type of unmeasured disturbance NLMPC expects to encounter and reject in the plant. In this
example, the UD model is an integrator with its input assumed to be white noise. Its output is added
to the relative yaw angle. Therefore, the controller expects a random step-like unmeasured
disturbance occurring at the relative yaw angle output and is prepared to reject it when it happens.

Create a nonlinear MPC controller with a prediction model that has seven states, three outputs, and
two inputs. The model has two MV signals: acceleration and steering. The product of the road
curvature and the longitudinal velocity is modeled as a measured disturbance, and the unmeasured
disturbance is modeled by white noise.

nlobj = nlmpc(7,3,'MV',[1 2],'MD',3,'UD',4);

In standard cost function, zero weights are applied by default to one or more OVs because there are fewer MVs than OVs.

Specify the controller sample time, prediction horizon, and control horizon.

nlobj.Ts = Ts;
nlobj.PredictionHorizon = 10;
nlobj.ControlHorizon = 2;

Specify the state function for the nonlinear plant model and its Jacobian.

nlobj.Model.StateFcn = @(x,u) LaneFollowingStateFcn(x,u);
nlobj.Jacobian.StateFcn = @(x,u) LaneFollowingStateJacFcn(x,u);

Specify the output function for the nonlinear plant model and its Jacobian. The output variables are:

• Longitudinal velocity
• Lateral deviation
• Sum of the yaw angle and yaw angle output disturbance

nlobj.Model.OutputFcn = @(x,u) [x(3);x(5);x(6)+x(7)];
nlobj.Jacobian.OutputFcn = @(x,u) [0 0 1 0 0 0 0;0 0 0 0 1 0 0;0 0 0 0 0 1 1];

Set the constraints for manipulated variables.

nlobj.MV(1).Min = -3; % Maximum acceleration 3 m/s^2
nlobj.MV(1).Max = 3; % Minimum acceleration -3 m/s^2

9 Nonlinear MPC

9-96

nlobj.MV(2).Min = -1.13; % Minimum steering angle -65
nlobj.MV(2).Max = 1.13; % Maximum steering angle 65

Set the scale factors.

nlobj.OV(1).ScaleFactor = 15; % Typical value of longitudinal velocity
nlobj.OV(2).ScaleFactor = 0.5; % Range for lateral deviation
nlobj.OV(3).ScaleFactor = 0.5; % Range for relative yaw angle
nlobj.MV(1).ScaleFactor = 6; % Range of steering angle
nlobj.MV(2).ScaleFactor = 2.26; % Range of acceleration
nlobj.MD(1).ScaleFactor = 0.2; % Range of Curvature

Specify the weights in the standard MPC cost function. The third output, yaw angle, is allowed to
float because there are only two manipulated variables to make it a square system. In this example,
there is no steady-state error in the yaw angle as long as the second output, lateral deviation, reaches
0 at steady state.

nlobj.Weights.OutputVariables = [1 1 0];

Penalize acceleration change more for smooth driving experience.

nlobj.Weights.ManipulatedVariablesRate = [0.3 0.1];

Validate prediction model functions at an arbitrary operating point using the validateFcns
command. At this operating point:

• x0 contains the state values.
• u0 contains the input values.
• ref0 contains the output reference values.
• md0 contains the measured disturbance value.

x0 = [0.1 0.5 25 0.1 0.1 0.001 0.5];
u0 = [0.125 0.4];
ref0 = [22 0 0];
md0 = 0.1;
validateFcns(nlobj,x0,u0,md0,{},ref0);

Model.StateFcn is OK.
Jacobian.StateFcn is OK.
Model.OutputFcn is OK.
Jacobian.OutputFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

In this example, an extended Kalman filter (EKF) provides state estimation for the seven states. The
state transition function for the EKF is defined in LaneFollowingEKFStateFcn, and the
measurement function is defined in LaneFollowingEKFMeasFcn.

Design Adaptive Model Predictive Controller

An adaptive MPC (AMPC) controller is also designed using the Path Following Control System block
in this example. This controller uses a linear model for the vehicle dynamics and updates the model
online as the longitudinal velocity varies.

In practice, as long as a linear control solution such as adaptive MPC or gain-scheduled MPC can
achieve comparable control performance against nonlinear MPC, you would implement the linear
control solution because it is more computationally efficient.

 Lane Following Using Nonlinear Model Predictive Control

9-97

Compare Controller Performance

To compare the results of NLMPC and AMPC, simulate the model and save the logged data.

First, simulate the model using nonlinear MPC. To do so, set controller_type to 1.

controller_type = 1;
sim(mdl)
logsout1 = logsout;

Second, simulate the model using adaptive MPC. To do so, set controller_type to 2.

controller_type = 2;
sim(mdl)
logsout2 = logsout;

 Assuming no disturbance added to measured output channel #1.
 Assuming no disturbance added to measured output channel #2.
-->Assuming output disturbance added to measured output channel #3 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Plot and compare simulation results.

LaneFollowingCompareResults(logsout1,logsout2)

9 Nonlinear MPC

9-98

In the first plot, both nonlinear MPC and adaptive MPC give almost identical steering angle profiles.
The lateral deviation and relative yaw angle are close to zero during the maneuver. This result implies
that the vehicle is traveling along the desired path.

The longitudinal control command and performance for nonlinear and adaptive MPC are slightly
different. The nonlinear MPC controller has smoother acceleration command and better tracking of
set velocity, although the result from adaptive MPC is also acceptable.

You can also view the results via Scopes of Outputs and Inputs in the model.

Set the controller variant to nonlinear MPC.

controller_type = 1;

Conclusion

This example shows how to design a nonlinear model predictive controller for lane following. The
performance of using nonlinear MPC and adaptive MPC is compared. You can select nonlinear MPC
or adaptive MPC depending on the modeling information and computational power for your
application.

% close Simulink model
bdclose(mdl)

See Also
Nonlinear MPC Controller | nlmpc

 Lane Following Using Nonlinear Model Predictive Control

9-99

More About
• “Nonlinear MPC” on page 9-2
• “Lane Change Assist Using Nonlinear Model Predictive Control” on page 9-101

9 Nonlinear MPC

9-100

Lane Change Assist Using Nonlinear Model Predictive Control
This example shows how to design a lane-change controller using a multistage nonlinear model
predictive control (MPC). In this example, you:

1 Review a control algorithm that combines a custom AStar path planning algorithm and a lane-
change controller designed using the Model Predictive Control Toolbox™ software.

2 Design a multistage nonlinear MPC controller for autonomous lane changing.
3 Test the closed-loop control system in a Simulink® model using driving scenarios generated

using Automated Driving Toolbox™ software.

Introduction

A lane change assist control system autonomously steers an ego vehicle to an adjacent lane when
there is another vehicle moving slower in front of it, as shown in the following figure.

The lane change controller in this example is designed to work when the ego vehicle is driving on a
straight road at a constant velocity, though it can be extended to other driving scenarios with
appropriate modifications.

In this example:

1 A driving scenario is used to model the environment such that a situation requiring a lane change
arises. The scenario was created and exported using the Driving Scenario Designer app from
the Automated Driving Toolbox.

2 Based on this scenario, a discrete occupancy grid is populated, which is then used by the path
planner to plan a collision-free reference path for the ego vehicle.

3 Once the reference path is generated, the controller performs the autonomous lane change
maneuver by controlling the steering angle of the ego vehicle to track the lateral position of the
planned path.

Overview of Simulink Model

Open the Simulink model.

mdl = 'LaneChangeExample';
open_system(mdl)

 Lane Change Assist Using Nonlinear Model Predictive Control

9-101

The model contains four main components:

1 Nonlinear MPC — Lane change controller, which controls the front steering angle of the ego
vehicle

2 Vehicle and Environment — Models the motion of the ego vehicle and models the environment
3 Occupancy Grid Generator — Generates a discrete grid that contains information about the

environment and cars surrounding the ego vehicle
4 AStar Path Planner — Plans a collision-free path for the ego vehicle considering the dynamic

behavior of other cars

Inside the Vehicle and Environment subsystem, the Vehicle Dynamics subsystem models the vehicle
dynamics using the Bicycle Model - Velocity Input block from the Automated Driving Toolbox.

Opening this model runs the helperLCSetUp script, which initializes the data used by the Simulink
model, such as the vehicle model parameters, controller design parameters, road scenario, and
surrounding cars.

The multistage nonlinear MPC controller for this example is designed using the createNLmpcObjLC
function, which is called from the helperLCSetUp script. This controller uses the state equations
defined in vehicleStateFcnLC.m and controls the steering angle of the ego vehicle.

Plot the scenario with the road and the cars that the ego vehicle will encounter.

plot(scenario)

9 Nonlinear MPC

9-102

The following figure shows a zoomed-in portion of the road.

 Lane Change Assist Using Nonlinear Model Predictive Control

9-103

Simulate the model to the end of the scenario. Simulating the model opens the Bird's Eye Plot in
World Coordinates and the occupancy grid in Ego Perspective. The occupancy grid shows a
representation of the road and vehicles in front of the ego vehicle and includes the planned path as a
white line.

out = sim(mdl);

9 Nonlinear MPC

9-104

 Lane Change Assist Using Nonlinear Model Predictive Control

9-105

9 Nonlinear MPC

9-106

During the simulation, the Bird's Eye Plot shows the planned path in blue.

To plot the results of the simulation and depict the ego vehicle surroundings, you can also use the
Bird's-Eye Scope (Automated Driving Toolbox). The Bird's-Eye Scope is a model-level visualization
tool that you can open from the Simulink toolstrip. On the Simulation tab, under Review Results,
click Bird's-Eye Scope. After opening the scope, set up the signals by clicking Find Signals. Once
the signals are set up and the simulation is running, you can view the lane change maneuver
performed by the ego vehicle in the World Coordinates View of the Bird's-Eye Scope.

 Lane Change Assist Using Nonlinear Model Predictive Control

9-107

Plot the controller performance.

plotLCResults

9 Nonlinear MPC

9-108

The figure shows the lane change performance of the controller.

• The Steering angle plot shows that the steering angle for the ego vehicle follows that of a
standard lane change maneuver.

• The Tracking performance plot shows that the multistage nonlinear MPC controller does a
satisfactory job tracking the lateral position of the reference path from the AStar path planner.

Run Controller for Multiple Test Scenarios

This example includes an additional test scenario. To verify the controller performance, you can test
the controller for multiple scenarios and tune the controller parameters if the performance is not
satisfactory. To do so:

1 Select the scenario by changing scenarioId in helperLCSetUp. To use the additional scenario,
set scenarioId = 2.

 Lane Change Assist Using Nonlinear Model Predictive Control

9-109

2 Configure the simulation parameters by running helperLCSetUp.
3 Simulate the model with the selected scenario.
4 Evaluate the controller performance using plotLCResults
5 Tune the controller parameters if the performance is not satisfactory.

Conclusion

This example shows how to implement an integrated autonomous lane change controller on a straight
road with a reference path generated from an AStar path planner and test it in Simulink using driving
scenarios generated using Automated Driving Toolbox software.

See Also
Nonlinear MPC Controller | nlmpc

More About
• “Nonlinear MPC” on page 9-2
• “Lane Following Using Nonlinear Model Predictive Control” on page 9-94

9 Nonlinear MPC

9-110

Control of Quadrotor Using Nonlinear Model Predictive Control
This example shows how to design a trajectory tracking controller for a quadrotor using nonlinear
model predictive control (MPC).

Quadrotor Model

The quadrotor has four rotors which are directed upwards. From the center of mass of the quadrotor,
rotors are placed in a square formation with equal distance. The mathematical model for the
quadrotor dynamics are derived from Euler-Lagrange equations [1].

The twelve states for the quadrotor are:

[x, y, z, ϕ, θ, ψ, ẋ, ẏ, ż, ϕ̇, θ̇, ψ̇],

where

• x, y, z denote the positions in the inertial frame
• Angle positions [ϕ, θ, ψ] are in the order of roll, pitch, and yaw
• The remaining states are the velocities of the positions and angles

The control inputs for the quadrotor are the squared angular velocities of the four rotors:

[ω1
2, ω2

2, ω3
2, ω4

2].

These control inputs create force, torque, and thrust in the direction of the body z-axis. In this
example, every state is measurable, and the control inputs are constrained to be within [0,12] rad

s
2.

The state function and state Jacobian function of the model are built and derived using Symbolic
Math Toolbox™ software.

getQuadrotorDynamicsAndJacobian;

ans = function_handle with value:
 @QuadrotorStateFcn

ans = function_handle with value:
 @QuadrotorStateJacobianFcn

The getQuadrotorDynamicsAndJacobian script generates the following files:

• QuadrotorStateFcn.m — State function
• QuadrotorStateJacobianFcn.m — State Jacobian function

For details on either function, open the corresponding file.

Design Nonlinear Model Predictive Controller

Create a nonlinear MPC object with 12 states, 12 outputs, and 4 inputs. By default, all the inputs are
manipulated variables (MVs).

nx = 12;
ny = 12;

 Control of Quadrotor Using Nonlinear Model Predictive Control

9-111

nu = 4;
nlobj = nlmpc(nx, ny, nu);

In standard cost function, zero weights are applied by default to one or more OVs because there are fewer MVs than OVs.

Specify the prediction model state function using the function name. You can also specify functions
using a function handle.

nlobj.Model.StateFcn = "QuadrotorStateFcn";

Specify the Jacobian of the state function using a function handle. It is best practice to provide an
analytical Jacobian for the prediction model. Doing so significantly improves simulation efficiency.

nlobj.Jacobian.StateFcn = @QuadrotorStateJacobianFcn;

Validate your prediction model, your custom functions, and their Jacobians.

rng(0)
validateFcns(nlobj,rand(nx,1),rand(nu,1));

Model.StateFcn is OK.
Jacobian.StateFcn is OK.
No output function specified. Assuming "y = x" in the prediction model.
Analysis of user-provided model, cost, and constraint functions complete.

Specify a sample time of 0.1 seconds, prediction horizon of 18 steps, and control horizon of 2 steps.

Ts = 0.1;
p = 18;
m = 2;
nlobj.Ts = Ts;
nlobj.PredictionHorizon = p;
nlobj.ControlHorizon = m;

Limit all four control inputs to be in the range [0,12].

nlobj.MV = struct('Min',{0;0;0;0},'Max',{12;12;12;12});

The default cost function in nonlinear MPC is a standard quadratic cost function suitable for
reference tracking and disturbance rejection. In this example, the first 6 states [x, y, z, ϕ, θ, ψ] are
required to follow a given reference trajectory. Because the number of MVs (4) is smaller than the
number of reference output trajectories (6), there are not enough degrees of freedom to track the
desired trajectories for all output variables (OVs).

nlobj.Weights.OutputVariables = [1 1 1 1 1 1 0 0 0 0 0 0];

In this example, MVs also have nominal targets to keep the quadrotor floating, which can lead to
conflict between the MV and OV reference tracking goals. To prioritize targets, set the average MV
tracking priority lower than the average OV tracking priority.

nlobj.Weights.ManipulatedVariables = [0.1 0.1 0.1 0.1];

Also, penalize aggressive control actions by specifying tuning weights for the MV rates of change.

nlobj.Weights.ManipulatedVariablesRate = [0.1 0.1 0.1 0.1];

Closed-Loop Simulation

Simulate the system for 20 seconds with a target trajectory to follow.

9 Nonlinear MPC

9-112

% Specify the initial conditions
x = [7;-10;0;0;0;0;0;0;0;0;0;0];
% Nominal control that keeps the quadrotor floating
nloptions = nlmpcmoveopt;
nloptions.MVTarget = [4.9 4.9 4.9 4.9];
mv = nloptions.MVTarget;

Simulate the closed-loop system using the nlmpcmove function, specifying simulation options using
an nlmpcmove object.

Duration = 20;
hbar = waitbar(0,'Simulation Progress');
xHistory = x';
lastMV = mv;
uHistory = lastMV;
for k = 1:(Duration/Ts)
 % Set references for previewing
 t = linspace(k*Ts, (k+p-1)*Ts,p);
 yref = QuadrotorReferenceTrajectory(t);
 % Compute the control moves with reference previewing.
 xk = xHistory(k,:);
 [uk,nloptions,info] = nlmpcmove(nlobj,xk,lastMV,yref',[],nloptions);
 uHistory(k+1,:) = uk';
 lastMV = uk;
 % Update states.
 ODEFUN = @(t,xk) QuadrotorStateFcn(xk,uk);
 [TOUT,YOUT] = ode45(ODEFUN,[0 Ts], xHistory(k,:)');
 xHistory(k+1,:) = YOUT(end,:);
 waitbar(k*Ts/Duration,hbar);
end
close(hbar)

Visualization and Results

Plot the results, and compare the planned and actual closed-loop trajectories.

plotQuadrotorTrajectory;

 Control of Quadrotor Using Nonlinear Model Predictive Control

9-113

9 Nonlinear MPC

9-114

Because the number of MVs is smaller than the number of reference output trajectories, there are not
enough degrees of freedom to track the desired trajectories for all OVs.

As shown in the figure for states [x, y, z, ϕ, θ, ψ] and control inputs,

• The states [x, y, z] match the reference trajectory very closely within 7 seconds.
• The states [ϕ, θ, ψ] are driven to the neighborhood of zeros within 9 seconds.
• The control inputs are driven to the target value of 4.9 around 10 seconds.

You can animate the trajectory of the quadrotor. The quadrotor moves close to the "target" quadrotor
which travels along the reference trajectory within 7 seconds. After that, the quadrotor follows
closely the reference trajectory. The animation terminates at 20 seconds.

animateQuadrotorTrajectory;

 Control of Quadrotor Using Nonlinear Model Predictive Control

9-115

Conclusion

This example shows how to design a nonlinear model predictive controller for trajectory tracking of a
quadrotor. The dynamics and Jacobians of the quadrotor are derived using Symbolic Math Toolbox
software. The quadrotor tracks the reference trajectory closely.

References

[1] T. Luukkonen, Modelling and control of quadcopter, Independent research project in applied
mathematics, Espoo: Aalto University, 2011.

[2] E. Tzorakoleftherakis, and T. D. Murphey. "Iterative sequential action control for stable, model-
based control of nonlinear systems." IEEE Transactions on Automatic Control (2018).

See Also
nlmpc | nlmpcmove | nlmpcmoveopt

More About
• “Nonlinear MPC” on page 9-2

9 Nonlinear MPC

9-116

Economic MPC
Economic model predictive controllers optimize control actions to satisfy generic economic or
performance cost functions. The name Economic MPC derives from applications in which the cost
function to minimize is the operating cost of the system under control.

Traditional implicit MPC controllers minimize a quadratic performance criterion (cost function) using
a linear prediction model.

A quadratic cost function is adequate for tracking specified output and manipulated variable
references. However, some applications can require optimizing for performance criteria, such as fuel
consumption or production rates. Such performance criteria can be a combination of linear or
nonlinear functions of the system states, inputs, or outputs.

An economic MPC controller:

• Can use a linear or nonlinear prediction model
• Uses your generic performance cost function instead of (or in addition to) the built-in quadratic

cost function
• Computes optimal control moves by solving a nonlinear optimization problem using the SQP

algorithm in fmincon

To implement an economic MPC controller, create a nonlinear MPC controller object, and specify:

• State and output functions that define your prediction model. For more information, see “Specify
Prediction Model for Nonlinear MPC” on page 9-5.

• A generic performance-based cost function. For more information, see “Specify Cost Function for
Nonlinear MPC” on page 9-12.

For more information on nonlinear MPC controller objects, see nlmpc.

You can simulate economic MPC controllers:

• In Simulink using the Nonlinear MPC Controller block
• At the command line using nlmpcmove

Note Designing an economic MPC controller using the MPC Designer app is not supported.

An economic MPC controller requires Optimization Toolbox software.

See Also
Functions
nlmpc | nlmpcmove

Blocks
Nonlinear MPC Controller

 Economic MPC

9-117

More About
• “Economic MPC Control of Ethylene Oxide Production” on page 9-119

9 Nonlinear MPC

9-118

Economic MPC Control of Ethylene Oxide Production
This example shows how to maximize the production of an ethylene oxide plant for profit using an
economic MPC controller. This controller is implemented using a nonlinear MPC controller with a
custom performance-based cost function.

Nonlinear Ethylene Oxidation Plant

Conversion of ethylene (C2H4) to ethylene oxide (C2H4O) occurs in a cooled, gas-phase catalytic
reactor. Three reactions occur simultaneously in the well-mixed gas phase within the reactor:

C2H4 + 0.5*O2 -> C2H4O

C2H4 + 3*O2 -> 2*CO2 + 2*H2O

C2H4O + 2.5*O2 -> 2*CO2 + 2*H2O

The first reaction is wanted and the other two are unwanted because they reduce C2H4O production.
A mixture of air and ethylene is continuously fed into the reactor. The first-principle nonlinear
dynamic model of the reactor is implemented as a set of ordinary differential equations (ODEs) in the
oxidationPlantCT function. For more information, see oxidationPlantCT.m.

The plant has four states:

• Gas density in the reactor ()
• C2H4 concentration in the reactor ()
• C2H4O concentration in the reactor ()
• Temperature in the reactor ()

The plant has three inputs:

• C2H4 concentration in the feed ()
• Reactor cooling jacket temperature ()
• C2H4 feed rate ()

All variables in the model are scaled to be dimensionless and of unity order. The basic plant equations
and parameters are obtained from [1] with some changes in input/output definitions and ordering.

The plant is asymptotically open-loop stable.

Control Objectives and Constraints

The primary control objective is to maximize the ethylene oxide (C2H4O) production rate (which in
turn maximizes profit) at any steady-state operating point, given the availability of C2H4 in the feed
stream.

The C2H4O production rate is defined as the product of the C2H4O concentration in the reactor ()
and the total volumetric flow rate exiting the reactor ().

The operating point is effectively determined by the three inputs. is the C2H4 concentration in the
feed, which the MPC controller can manipulate. is the cooling jacket temperature, which keeps the
temperature stable. is the C2H4 feed rate, which indicates the available ethylene coming from an
upstream process. A higher feed rate increases the achievable C2H4O production rate. In this
example, both and are measured disturbances.

 Economic MPC Control of Ethylene Oxide Production

9-119

Optimal Production Rate at the Initial Operating Point

At the initial condition, the cooling jacket temperature is 1.1 and the C2H4 availability is 0.175.

Tc = 1.1;
C2H4Avalability = 0.175;

Compute the optimal C2H4O production rate by sweeping through the operating range of the C2H4
concentration in the feed () using fsolve.

uRange = 0.1:0.1:3;
EORate = zeros(length(uRange),1);
optimopt = optimoptions('fsolve','Display','none');
for ct = 1:length(uRange)
 xRange = real(fsolve(@(x) oxidationPlantCT(x,[uRange(ct);Tc;C2H4Avalability]),rand(1,4),optimopt));
 EORate(ct) = C2H4Avalability/uRange(ct)*xRange(3)*xRange(4);
end
figure
plot(uRange,EORate)
xlabel('C2H4 concentration in the feed')
ylabel('C2H4O Production Rate')

The optimal C2H4O production rate of 0.0156 is achieved at = 1.6. In other words, if the plant
originally operates with a different C2H4 concentration in the feed, you expect the economic MPC
controller to bring it to 1.6 such that the optimal C2H4O production rate is achieved.

9 Nonlinear MPC

9-120

Nonlinear MPC Design

Economic MPC can be implemented with a nonlinear MPC controller. The prediction model has four
states and three inputs (one MV and two MDs). In this example, since you do not need an output
function, assume y = x.

nlobj = nlmpc(4,4,'MV',1,'MD',[2 3]);
nlobj.States(1).Name = 'Den';
nlobj.States(1).Name = 'C2H4';
nlobj.States(1).Name = 'C2H4O';
nlobj.States(1).Name = 'Tc';
nlobj.MV.Name = 'CEin';
nlobj.MD(1).Name = 'Tc';
nlobj.MD(2).Name = 'Availability';

In standard cost function, zero weights are applied by default to one or more OVs because there are fewer MVs than OVs.

The nonlinear plant model is defined in oxidationPlantDT. It is a discrete-time model where a
multistep explicit Euler method is used for integration. While this example uses a nonlinear plant
model, you can also implement economic MPC using linear plant models.

nlobj.Model.StateFcn = 'oxidationPlantDT';
nlobj.Model.IsContinuousTime = false;

In general, to improve computational efficiency, it is best practice to provide an analytical Jacobian
function for the prediction model. In this example, you do not provide one because the simulation is
fast enough.

The relatively large sample time of 25 seconds used here is appropriate when the plant is stable and
the primary objective is economic optimization. Prediction horizon is 2, which gives a prediction time
is 50 seconds.

Ts = 25;
nlobj.Ts = Ts; % Sample time
nlobj.PredictionHorizon = 2; % Prediction horizon
nlobj.ControlHorizon = 1; % Control horizon

All the states in the prediction model must be positive based on first principles. Therefore, specify a
minimum bound of zero for all states.

nlobj.States(1).Min = 0;
nlobj.States(2).Min = 0;
nlobj.States(3).Min = 0;
nlobj.States(4).Min = 0;

Plant input must stay within saturation limits between 0.1 and 3.

nlobj.MV.Min = 0.1;
nlobj.MV.Max = 3;

The rates of change of are also limited to +/- 0.02/sec.

nlobj.MV.RateMin = -0.02*Ts;
nlobj.MV.RateMax = 0.02*Ts;

 Economic MPC Control of Ethylene Oxide Production

9-121

Custom Cost Function for Economic MPC

Instead of using the standard quadratic objective function, a custom cost function is used as the
replacement. You want to maximize the C2H4O production rate at the end of the prediction horizon.

f = -(u3/u1*x3*x4)

The negative sign in f is used to maximize production, since the controller minimizes f during
optimization. For more information, see oxidationCostFcn.m.

nlobj.Optimization.CustomCostFcn = 'oxidationCostFcn';
nlobj.Optimization.ReplaceStandardCost = true;

Validate Custom Functions

Assume that the plant initially operates at u1 = 0.5.

u0 = 0.5;

Find the states at the steady state using fsolve.

x0 = real(fsolve(@(x) oxidationPlantCT(x,[u0;Tc;C2H4Avalability]),rand(1,4),optimopt));

The C2H4O production rate is 0.0138, far away from the optimal condition of 0.0156.

EORate0 = C2H4Avalability/u0*x0(3)*x0(4);

Validate the state function and cost function at the initial condition.

validateFcns(nlobj,x0,u0,[Tc C2H4Avalability]);

Model.StateFcn is OK.
No output function specified. Assuming "y = x" in the prediction model.
Optimization.CustomCostFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

You can compute the first move using the nlmpcmove function. It returns an MV of 1.0, indicating
that economic MPC will increase the MV from 0.5 to 1, limited by the manipulated variable rate
constraint.

mv = nlmpcmove(nlobj,x0,u0,zeros(1,4),[Tc C2H4Avalability]);

Simulink Model with Economic MPC Controller

Open the Simulink model.

mdl = 'mpc_economicEO';
open_system(mdl)

9 Nonlinear MPC

9-122

The cooling jacket temperature is initially 1.1 and remains constant for the first 100 seconds. It then
increases to 1.15, and therefore, reduces the optimal C2H4O production rate from 0.0156 to
0.0135.

The C2H4 availability is initially 0.175 and remains constant for the first 200 seconds. It then
increases to 0.25, and therefore, increases the optimal C2H4O production rate from 0.0135 to
0.0195.

The model includes constant (zero) references for the four plant outputs. The Nonlinear MPC
Controller block requires these reference signals, but they are ignored in the custom cost function.

The Plant subsystem calculates the plant states by integrating the ODEs in oxidationPlantCT.m.
Assume all the states are measurable such that you do not need to implement a nonlinear state
estimator in this example. The C2H4O plant output is the instantaneous C2H4O production rate,
which is used for display purposes.

Simulate Model and Analyze Results

Run the simulation.

open_system([mdl '/MV']);
open_system([mdl '/C2H4O']);
sim(mdl)

 Economic MPC Control of Ethylene Oxide Production

9-123

9 Nonlinear MPC

9-124

Because the C2H4O plant operating at the initial condition is not optimal, its profit can be improved.
In the first 100 seconds, the economic MPC controller gradually moves the plant to the true optimal
condition under the same cooling jacket temperature and C2H4 availability constraints. It improves
C2H4O production rate by:

which could be worth millions of dollars per year in large-scale production.

In the next 100 seconds, the cooling jacket temperature increases from 1.1 to 1.15. The economic
MPC controller moves the plant smoothly to the new optimal condition 0.0135 as expected.

In the next 100 seconds, the C2H4 availability increases from 0.175 to 0.25. The economic MPC
controller is again able to move the plant the new optimal steady state 0.0195.

Close the Simulink model.

bdclose(mdl)

 Economic MPC Control of Ethylene Oxide Production

9-125

References

[1] H. Durand, M. Ellis, P. D. Christofides. "Economic model predictive control designs for input rate-
of-change constraint handling and guaranteed economic performance." Computers and Chemical
Engineering. Vol. 92,2016, pp 18-36.

See Also

More About
• “Economic MPC” on page 9-117

9 Nonlinear MPC

9-126

Truck and Trailer Automatic Parking Using Multistage
Nonlinear MPC

This example shows how to use multistage nonlinear model predictive control (MPC) as a path
planner to find the optimal trajectory to automatically park a truck and trailer system in the presence
of static obstacles.

Overview

An MPC controller uses an internal model to predict plant behavior. Given the current states of the
plant, based on the prediction model, MPC finds an optimal control sequence that minimizes cost and
satisfies the constraints specified across the prediction horizon. Because MPC finds the plant future
trajectory at the same time, it can work as a powerful tool to solve trajectory optimization problems,
such as autonomous parking of a vehicle and motion planning of a robot arm.

In such trajectory optimization problems the plant, cost function, and constraints can often be
nonlinear. Therefore, you need to use nonlinear MPC controller for problem formulation and solution.
In this example, you design a nonlinear MPC controller that finds an optimal route to automatically
park a truck with a single trailer from its initial position to its target position, which is between two
static obstacles. You can then pass the generated path to a low-level controller as a reference signal,
so that it can execute the parking maneuver in real time.

This example requires Optimization Toolbox™ and Robotics System Toolbox™ software.

Truck and Single Trailer System

The following figure shows the truck and trailer nonlinear dynamic system.

 Truck and Trailer Automatic Parking Using Multistage Nonlinear MPC

9-127

The states for this model are:

1 x (center of the trailer rear axle, global x position)
2 y (center of the trailer rear axle, global y position)
3 theta (trailer orientation, global angle, 0 = east)
4 beta (truck orientation with respect to trailer, 0 = aligned)

The inputs for this model are:

1 alpha (truck steering angle)
2 v (truck longitudinal velocity)

For this model, length and position are in meters, velocity is in m/s, and angles are in radians.

Define the following model parameters.

• M (hitch length)
• L1 (truck length)
• W1 (truck width)
• L2 (trailer length)
• W2 (trailer width)
• Lwheel (wheel diameter)

9 Nonlinear MPC

9-128

• Wwheel (wheel width)

params = struct('M', 1, ...
 'L1',6,...
 'W1',2.5,...
 'L2',10,...
 'W2',2.5,...
 'Lwheel',1,...
 'Wwheel',0.4);

The nonlinear model is implemented in the TruckTrailerStateFcn function and its manually-
derived analytical Jacobian (which is used to speed up optimization) is in the
TruckTrailerStateJacobianFcn function .

In this example, since you use MPC as a path planner instead of a low-level path-following controller,
the truck's longitudinal velocity is used as one of the manipulated variables instead of the
acceleration.

Automatic Parking Problem

The parking lot is 100 meters wide and 60 meters long. The goal is to find a viable path that brings
the truck and trailer system from any initial position to the target position (the green cross in the
following figure) in 20 seconds using reverse parking. In the process, the planned path must avoid
collisions with two obstacles next to the parking spot.

initialPose = [0;0;0;0];
targetPose = [0;-25;pi/2;0];
TruckTrailerPlot(initialPose,targetPose,params);

 Truck and Trailer Automatic Parking Using Multistage Nonlinear MPC

9-129

The initial plant inputs (steering angle and longitudinal velocity) are both 0.

u0 = zeros(2,1);

The initial position must be valid. Use the inequality constraint function TruckTrailerIneqConFcn
to check for validity. Details about this function are discussed in the next section. Here, collision
detection is carried out by specific Robotics System Toolbox functions.

cineq = TruckTrailerIneqConFcn(1,initialPose,u0,...
 [params.M;params.L1;params.L2;params.W1;params.W2]);
if any(cineq>0)
 fprintf('Initial pose is not valid.\n');
 return
end

Path Planning Using Multistage Nonlinear MPC

Compared with the generic nonlinear MPC controller (nlmpc object), multistage nonlinear MPC
provides you with a more flexible and efficient way to implement MPC with staged costs and
constraints. This flexibility and efficiency is especially useful for trajectory planning.

A multistage nonlinear MPC controller with prediction horizon p defines p+1 stages, representing
time k (current time), k+1, ..., k+p. For each stage, you can specify stage-specific cost, inequality
constraint, and equality constraint functions. These functions depend only on the plant state and
input values at that stage. Given the current plant states x[k], MPC finds the manipulated variable
(MV) trajectory (from time k to k+p-1) to optimize the summed stage costs (from time k to k+p),
satisfying all the stage constraints (from time k to k+p).

9 Nonlinear MPC

9-130

In this example, the plant has four states and two inputs (both MVs). Choose the prediction horizon p
and sample time Ts such that p*Ts = 20.

Create the multistage nonlinear MPC controller.

p = 40;
nlobj = nlmpcMultistage(p,4,2);
nlobj.Ts = 0.5;

Specify the prediction model and its analytical Jacobian in the controller object. Since the model
requires three parameters (M, L1, and L2), set Model.ParameterLength to 3.

nlobj.Model.StateFcn = "TruckTrailerStateFcn";
nlobj.Model.StateJacFcn = "TruckTrailerStateJacobianFcn";
nlobj.Model.ParameterLength = 3;

Specify hard bounds on the two manipulated variables. The steering angle must remain in the range
+/- 45 degrees. The maximum forward speed is 10 m/s and the maximum reverse speed is 10 m/s.

nlobj.MV(1).Min = -pi/4; % Minimum steering angle
nlobj.MV(1).Max = pi/4; % Maximum steering angle
nlobj.MV(2).Min = -10; % Minimum velocity (reverse)
nlobj.MV(2).Max = 10; % Maximum velocity (forward)

Specify hard bounds on the fourth state, which is the angle between truck and trailer. It cannot go
beyond +/-90 degrees due to mechanics limitations.

nlobj.States(4).Min = -pi/2;
nlobj.States(4).Max = pi/2;

You can use different ways to define the cost terms. For example, you might want to minimize time,
fuel consumption, or parking speed. For this example, minimize parking speed in the quadratic
format to promote safety.

Since MVs are only valid from stage 1 to stage p, you do not need to define any stage cost for the last
stage, p+1. The five model settings, M, L1, L2, W1, and W are stage parameters for stages 1 to p and
are used by the inequality constraint functions.

for ct=1:p
 nlobj.Stages(ct).CostFcn = "TruckTrailerCost";
 nlobj.Stages(ct).CostJacFcn = "TruckTrailerCostGradientFcn";
 nlobj.Stages(ct).ParameterLength = 5;
end

You can use inequality constraints to avoid collision during the parking process. Use the
TruckTrailerIneqConFcn function to check whether the truck or the trailer collide with any of the
two static obstacles at a specific stage. When either the truck or the trailer gets within the 1 m safety
zone around the obstacles, a collision is detected.

In general, check for such collisions for all the prediction steps (from stage 2 to stage p+1). In this
example, however, you only need to check stages from 2 to p because the last stage is already taken
care of by the equality constraint function.

For this example, do not provide an analytical Jacobian for the inequality constraint functions because
it is too complicated to derive manually. Therefore, the controller uses a finite-difference method
(numerical perturbation) to estimate the Jacobian at run time.

 Truck and Trailer Automatic Parking Using Multistage Nonlinear MPC

9-131

for ct=2:p
 nlobj.Stages(ct).IneqConFcn = "TruckTrailerIneqConFcn";
end

Use terminal state for the last stage to ensure successful parking at the target position. In this
example, the target position is provided as a run-time signal. Here we use a dummy finite value to let
MPC know which states will have terminal values at run time.

nlobj.Model.TerminalState = zeros(4,1);

At the end of multistage nonlinear MPC design, you can use the validateFcns command with
random initial plant states and inputs to check whether any of the user-defined state, cost, and
constraint function as well as any analytical Jacobian function, has a problem.

You must provide all the defined state functions and stage parameters to the controller at run time.
StageParameter contains all the stage parameters stacked into a single vector. We also use
TerminalState to specify terminal state at run time.

simdata = getSimulationData(nlobj,'TerminalState');
simdata.StateFcnParameter = [params.M;params.L1;params.L2];
simdata.StageParameter = repmat([params.M;params.L1;params.L2;params.W1;params.W2],p,1);
simdata.TerminalState = targetPose;
validateFcns(nlobj,[2;3;0.5;0.4],[0.1;0.2],simdata);

Model.StateFcn is OK.
Model.StateJacFcn is OK.
"CostFcn" of the following stages [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40] are OK.
"CostJacFcn" of the following stages [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40] are OK.
"IneqConFcn" of the following stages [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40] are OK.
Analysis of user-provided model, cost, and constraint functions complete.

Since the default nonlinear programming solver fmincon searches for a local minimum, you must
provide a good initial guess for the decision variables, especially for trajectory optimization problems
that usually involve a complicated (likely nonconvex) solution space.

This example has 244 decision variables, the plant states and inputs (6 in total) for each of the first p
(40) stages and plant states (4) for the last stage p+1. The TruckTrailerInitialGuess function
uses simple heuristics to generate the initial guess. For example, if the truck and trailer is initially
positioned above the obstacles, it generates an initial guess with one waypoint; otherwise, it uses two
waypoints (a waypoint is an intermediate point on a route of travel at which course is changed). The
initial guess is displayed as dots in the following animation plot.

[simdata.InitialGuess, XY0] = TruckTrailerInitialGuess(initialPose,targetPose,u0,p);

Trajectory Planning and Simulation Result

Use the nlmpcmove function to find the optimal parking path, which typically takes ten to twenty
seconds, depending on the initial position.

fprintf('Automated Parking Planner is running...\n');
tic;[~,~,info] = nlmpcmove(nlobj,initialPose,u0,simdata);t=toc;
fprintf('Calculation Time = %s; Objective cost = %s; ExitFlag = %s; Iterations = %s\n',...
 num2str(t),num2str(info.Cost),num2str(info.ExitFlag),num2str(info.Iterations));

Automated Parking Planner is running...
Calculation Time = 13.2531; Objective cost = 248.5784; ExitFlag = 1; Iterations = 51

9 Nonlinear MPC

9-132

Two plots are generated. One is the animation of the parking process, where blue circles indicate the
optimal path and the initial guess is shown as a dot. The other displays the optimal trajectory of plant
states and control moves.

TruckTrailerPlot(initialPose, targetPose, params, info, XY0);

 Truck and Trailer Automatic Parking Using Multistage Nonlinear MPC

9-133

The following screenshots show the optimal trajectories found by MPC for different initial positions.

9 Nonlinear MPC

9-134

 Truck and Trailer Automatic Parking Using Multistage Nonlinear MPC

9-135

9 Nonlinear MPC

9-136

 Truck and Trailer Automatic Parking Using Multistage Nonlinear MPC

9-137

9 Nonlinear MPC

9-138

 Truck and Trailer Automatic Parking Using Multistage Nonlinear MPC

9-139

You can try other initial X-Y positions in the Automatic Parking Problem section by changing the first
two parameters of initialPose, as long as the positions are valid.

If ExitFlag is negative, the nonlinear MPC controller fails to find an optimal solution and you cannot
trust the returned trajectory. In that case, you might need to provide a better initial guess and specify
it in simdata.InitialGuess before calling nlmpcmove.

See Also
nlmpcMultistage | nlmpcmove

Related Examples
• “Nonlinear MPC” on page 9-2

9 Nonlinear MPC

9-140

Land a Rocket Using Multistage Nonlinear MPC
This example shows how to use a multistage nonlinear MPC controller as a planner to find an optimal
path that safely lands a rocket on the ground and then use another multistage nonlinear MPC
controller as a feedback controller to follow the generated path and carry out the landing maneuver.

The environment in this example is a 3-DOF rocket represented by a circular disc with mass. The
rocket has two thrusters for forward and rotational motion. Gravity acts vertically downwards, and
there are no aerodynamic drag forces. The goal is to first find a path that can safely land the robot on
the ground at a specified location offline and then execute the landing maneuver at run time.

In this planning and control problem:

• Motion of the rocket is bounded in X (horizontal axis) from -100 to 100 meters and Y (vertical axis)
from 0 to 120 meters.

• The goal position is at (0,0) with orientation at 0 radians.
• The maximum thrust applied by each thruster can be preconfigured.
• The rocket can have an arbitrary initial position and orientation.

x0 = [-30;60;0;0;0;0];
u0 = [0;0];

Obtain Nonlinear Dynamic Model of the Rocket

The first-principle nonlinear dynamic model of the rocket has six states and 2 inputs. Both inputs are
manipulated variables.

States:

1 x: Horizontal position of the center of gravity in meters
2 y: Vertical position of the center of gravity in meters
3 theta: Tilt angle with respect to the center of gravity in radians
4 dxdt: Horizontal velocity in meters per second
5 dydt: Vertical velocity in meters per second
6 dthetadt: Angular velocity in radians per second

Inputs: # thrust on the left, in Newtons # thrust on the right, in Newtons

The continuous-time model of the rocket is implemented with the RocketStateFcn function. To
speed up optimization, its analytical Jacobian is manually derived in the RocketStateJacobianFcn
function. The model is valid only if the rocket is above or at the ground ().

At run time, you assume that all the states are measurable and there is a sensor reading that detects
a rough landing (-1), soft landing (1), or airborne (0) condition.

Design Planner and Find Optimal Landing Path

MPC uses an internal model to predict plant behavior in the future. Given the current states of the
plant, based on the prediction model, MPC finds an optimal control sequence that minimizes the cost
and satisfies all the constraints specified across the prediction horizon. Since MPC finds the state
trajectory of the plant in the future, you can use MPC to solve trajectory optimization problems. Such

 Land a Rocket Using Multistage Nonlinear MPC

9-141

problems include autonomous parking of a vehicle, motion planning of a robot arm, and finding a
landing path for a rocket.

For trajectory optimization problems, the plant, cost function, and constraints are often nonlinear.
Therefore, you must formulate and solve the planning problem using nonlinear MPC. You can pass the
generated optimal path to a path-following controller as a reference signal, so that it can execute the
planned maneuver.

Compared to a generic nonlinear MPC controller, implemented using an nlmpc object, multistage
nonlinear MPC provides a more flexible and efficient implementation with staged costs and
constraints. This flexibility and efficiency are especially useful for trajectory planning.

A multistage nonlinear MPC controller with prediction horizon p defines p+1 stages, which represent
times k (current time) through k+p. For each stage, you can specify stage-specific cost, inequality
constraint, and equality constraint functions. Each function depends only on the plant state and input
values at the corresponding stage.

Given the current plant states, x[k], the MPC controller finds the manipulated variable (MV)
trajectory (from time k to k+p-1) that optimizes the summed stage costs (from time k to k+p) while
satisfying all the stage constraints (from time k to k+p).

In this example, select the prediction horizon p and sample time Ts such that the prediction time is
p*Ts = 10 seconds.

Ts = 0.2;
pPlanner = 50;

Create a multistage nonlinear MPC controller for the specified prediction horizon and sample time.

planner = nlmpcMultistage(pPlanner,6,2);
planner.Ts = Ts;

Specify prediction model and its analytical Jacobian.

planner.Model.StateFcn = 'RocketStateFcn';
planner.Model.StateJacFcn = 'RocketStateJacobianFcn';

Specify hard bounds on the two thrusters. You can adjust the maximum thrust and observe its impact
on the landing strategy chosen by the planner. Typical maximum values are between 6 and 10
Newtons. If the maximum thrust is too small, you might not be able to land the rocket successfully if
the initial position is challenging.

planner.MV(1).Min = 0;
planner.MV(1).Max = 8;
planner.MV(2).Min = 0;
planner.MV(2).Max = 8;

To avoid crashing, specify a hard lower bound on the vertical Y position.

planner.States(2).Min = 10;

There are different factors that you can include in your cost function. For example, you can minimize
time, fuel consumption, or landing speed. For this example, you define a cost function that optimizes
fuel consumption by minimizing the sum of the thrust values. To improve efficiency, you also supply
the analytical Jacobian function for the cost.

9 Nonlinear MPC

9-142

Use the same cost function for all stages. Since MVs are only valid from stage 1 to stage p, you do not
need to define a stage cost for the final stage, p+1.

for ct=1:pPlanner
 planner.Stages(ct).CostFcn = 'RocketPlannerCostFcn';
 planner.Stages(ct).CostJacFcn = 'RocketPlannerCostGradientFcn';
end

To ensure a successful landing at the target, specify terminal state for the final stage.

planner.Model.TerminalState = [0;10;0;0;0;0];

In this example, set the maximum number of iterations to a large value to accommodate the large
search space and the nonideal default initial guess.

planner.Optimization.SolverOptions.MaxIterations = 1000;

After creating you nonlinear MPC controller, check whether there is any problem with your state,
cost, and constraint functions, as well as their analytical Jacobian functions. To do so, call
validateFcns functions with random initial plant states and inputs.

validateFcns(planner,rand(6,1),rand(2,1));

Model.StateFcn is OK.
Model.StateJacFcn is OK.
"CostFcn" of the following stages [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50] are OK.
"CostJacFcn" of the following stages [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50] are OK.
Analysis of user-provided model, cost, and constraint functions complete.

Compute the optimal landing path using nlmpcmove, which can typically take a few seconds,
depending on the initial rocket position.

fprintf('Rocker landing planner running...\n');
tic;
[~,~,info] = nlmpcmove(planner,x0,u0);
t=toc;
fprintf('Calculation Time = %s\n',num2str(t));
fprintf('Objective cost = %s',num2str(info.Cost));
fprintf('ExitFlag = %s',num2str(info.Iterations));
fprintf('Iterations = %s\n',num2str(info.Iterations));

Rocker landing planner running...
Calculation Time = 25.1026
Objective cost = 492.9689ExitFlag = 381Iterations = 381

Extract the optimal trajectory from the info structure and plot the result.

figure
subplot(2,1,1)
plot(info.Xopt(:,1),info.Xopt(:,2),'*')
title('Optimal XY Trajectory')
subplot(2,1,2)
plot(info.Topt,info.MVopt(:,1),info.Topt,info.MVopt(:,2))
title('Optimal MV Trajectory')

 Land a Rocket Using Multistage Nonlinear MPC

9-143

Animate the planned optimal trajectory.

plotobj = RocketAnimation(6,2);
for ct=1:pPlanner+1
 updatePlot(plotobj,(ct-1)*planner.Ts,info.Xopt(ct,:),info.MVopt(ct,:));
 pause(0.1);
end

9 Nonlinear MPC

9-144

Design Lander and Follow the Optimal Path

Like generic nonlinear MPC, you can use multistage nonlinear MPC for reference tracking and
disturbance rejection. In this example, you use it to track the optimal trajectory found by the planner.
For a path-following problem, the lander does not require a long prediction horizon. Create the
controller.

pLander = 10;
lander = nlmpcMultistage(pLander,6,2);
lander.Ts = Ts;

For the path-following controller, the lander has the same prediction model, thrust bounds, and
minimum Y position.

lander.Model.StateFcn = 'RocketStateFcn';
lander.Model.StateJacFcn = 'RocketStateJacobianFcn';
lander.MV(1).Min = 0;
lander.MV(1).Max = 8;
lander.MV(2).Min = 0;
lander.MV(2).Max = 8;
lander.States(2).Min = 10;

The cost function for the lander is different from that of the planner. The lander uses quadratic cost
terms to achieve both tight reference tracking (by penalizing the tracking error) and smooth control
actions (by penalizing large changes in the control actions). This lander cost function is implemented

 Land a Rocket Using Multistage Nonlinear MPC

9-145

in the RocketLanderCostFcn function. The corresponding manually derived cost gradient function
is implemented in RocketLanderCostGradientFcn.

At run time, you provide the six state trajectory references to the lander as stage parameters.
Therefore, specify the number of parameters for each stage.

for ct=1:pLander+1
 lander.Stages(ct).CostFcn = 'RocketLanderCostFcn';
 lander.Stages(ct).CostJacFcn = 'RocketLanderCostGradientFcn';
 lander.Stages(ct).ParameterLength = 6;
end

Since changes in control actions are represented by MVRate, you must enable the multistage
nonlinear MPC controller to use MVRate values in its in calculations.

lander.UseMVRate = true;

Validate the controller design.

simdata = getSimulationData(lander);
validateFcns(lander,rand(6,1),rand(2,1),simdata);

Model.StateFcn is OK.
Model.StateJacFcn is OK.
"CostFcn" of the following stages [1 2 3 4 5 6 7 8 9 10 11] are OK.
"CostJacFcn" of the following stages [1 2 3 4 5 6 7 8 9 10 11] are OK.
Analysis of user-provided model, cost, and constraint functions complete.

Simulate the landing maneuver in a closed-loop control scenario by iteratively calling nlmpcmove.
This simulation assumes that all states are measured. Stop the simulation when the rocket states are
close enough to the target states.

x = x0;
u = u0;
k = 1;
references = reshape(info.Xopt',(pPlanner+1)*6,1); % Extract reference signal as column vector.
while true
 % Obtain new reference signals.
 simdata.StageParameter = RocketLanderReferenceSignal(k,references,pLander);
 % Compute the control action.
 [u,simdata,infoLander] = nlmpcmove(lander,x,u,simdata);
 % Update the animation plot.
 updatePlot(plotobj,(k-1)*Ts,x,u);
 pause(0.1);
 % Simulate the plant to the next state using an ODE solver.
 [~,X] = ode45(@(t,x) RocketStateFcn(x,u),[0 Ts],x);
 x = X(end,:)';
 % Stop if rocket has landed.
 if max(abs(x-[0;10;0;0;0;0])) < 1e-2
 % Plot the the final rocket position.
 updatePlot(plotobj,k*Ts,x,zeros(2,1));
 break
 end
 % Move to the next simulation step.
 k = k + 1;
end

9 Nonlinear MPC

9-146

Due to the shorter horizon and different cost terms, the landing trajectory slightly differs from the
planned trajectory and it takes longer to land. This result is often what happens in such a two-tier
control framework with planning and regulation.

Simulate in Simulink Using Multistage Nonlinear MPC Block

You can implement the same closed-loop simulation in a Simulink model using the Multistage
Nonlinear MPC block.

mdl = 'RocketLanderSimulation';
open_system(mdl)

 Land a Rocket Using Multistage Nonlinear MPC

9-147

The States scope shows that the plant states are brought to the target states in a reasonable time.

sim(mdl)
open_system([mdl '/States'])
open_system([mdl '/MVs'])

ans =

 Simulink.SimulationOutput:
 tout: [81x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

9 Nonlinear MPC

9-148

 Land a Rocket Using Multistage Nonlinear MPC

9-149

For real-time applications, you can generate code from the Multistage Nonlinear MPC block.

bdclose(mdl)

See Also
Functions
nlmpcMultistage | nlmpcmove

Blocks
Multistage Nonlinear MPC Controller

Related Examples
• “Nonlinear MPC” on page 9-2
• “Land a Rocket Using Multistage Nonlinear MPC” on page 9-141

9 Nonlinear MPC

9-150

Code Generation

• “Generate Code and Deploy Controller to Real-Time Targets” on page 10-2
• “Generate Code to Compute Optimal MPC Moves in MATLAB” on page 10-7
• “Simulation and Code Generation Using Simulink Coder” on page 10-13
• “Simulation and Structured Text Generation Using Simulink PLC Coder” on page 10-20
• “Use the GPU to Compute MPC Moves in MATLAB” on page 10-25
• “Use the GPU to Simulate an MPC Controller in Simulink” on page 10-31
• “Using MPC Controller Block Inside Function-Call and Triggered Subsystems” on page 10-34
• “Solve Custom MPC Quadratic Programming Problem and Generate Code” on page 10-46
• “Simulate and Generate Code for MPC Controller with Custom QP Solver” on page 10-56
• “Real-Time Control with OPC Toolbox” on page 10-63
• “Implement MPC Controllers using Embotech FORCESPRO Solvers” on page 10-67

10

Generate Code and Deploy Controller to Real-Time Targets
Model Predictive Control Toolbox software provides code generation functionality for controllers
designed in MATLAB or Simulink.

Code Generation in MATLAB
After designing an MPC controller in MATLAB, you can generate C code using MATLAB Coder and
deploy it for real-time control.

To generate code for computing optimal MPC control moves for an implicit or explicit linear MPC
controller:

1 Generate data structures from an MPC controller or explicit MPC controller using
getCodeGenerationData.

2 To verify that your controller produces the expected closed-loop results, simulate it using
mpcmoveCodeGeneration in place of mpcmove.

3 Generate code for mpcmoveCodeGeneration using codegen. This step requires MATLAB Coder
software.

For an example, see “Generate Code to Compute Optimal MPC Moves in MATLAB” on page 10-7.

You can also generate code for nonlinear MPC controllers that use the default fmincon solver with
the SQP algorithm. To generate code for computing optimal control moves for a nonlinear MPC
controller:

1 Generate data structures from a nonlinear MPC controller using getCodeGenerationData.
2 To verify that your controller produces the expected closed-loop results, simulate it using

nlmpcmoveCodeGeneration in place of nlmpcmove.
3 Generate code for nlmpcmoveCodeGeneration using codegen. This step requires MATLAB

Coder software.

Code Generation in Simulink
After designing a controller in Simulink using any of the MPC blocks, you can generate code and
deploy it for real-time control. You can deploy controllers to all targets supported by the following
products:

• Simulink Coder
• Embedded Coder®

• Simulink PLC Coder
• Simulink Real-Time™

You can generate code for any of the Model Predictive Control Toolbox Simulink blocks.

Types of Controllers Blocks
Implicit MPC controllers MPC Controller
Explicit MPC controllers Explicit MPC Controller

10 Code Generation

10-2

Types of Controllers Blocks
Gain-scheduled MPC controllers Multiple MPC Controllers

Multiple Explicit MPC Controllers
Adaptive MPC controllers Adaptive MPC Controller
MPC controllers for automotive
applications

Adaptive Cruise Control System

Lane Keeping Assist System

Path Following Control System
Nonlinear MPC controllers that use
fmincon with SQP

Nonlinear MPC Controller

For more information on generating code, see “Simulation and Code Generation Using Simulink
Coder” on page 10-13 and “Simulation and Structured Text Generation Using Simulink PLC Coder”
on page 10-20.

Note The MPC Controller, Explicit MPC Controller, Adaptive MPC Controller, and Nonlinear MPC
Controller blocks are implemented using the MATLAB Function (Simulink) block. To see the
structure, right-click the block, and select Mask > Look Under Mask. Then, open the MPC
subsystem underneath.

Note If your nonlinear MPC controller uses optional parameters, you must also generate code for the
Bus Creator block connected to the params input port of the Nonlinear MPC Controller block. To do
so, place the Nonlinear MPC Controller and Bus Creator blocks within a subsystem, and generate
code for that subsystem.

Generate CUDA Code for Linear MPC Controllers
You can generate CUDA® code for your MPC controller using GPU Coder™. For more information on
supported GPUs, see “GPU Support by Release” (Parallel Computing Toolbox). For more information
on installing and setting up the prerequisite product, see “Installing Prerequisite Products” (GPU
Coder) and “Setting Up the Prerequisite Products” (GPU Coder).

To generate and use GPU code in MATLAB:

1 Design a linear controller using an mpc object.
2 Generate the structures for the core, states, and online data from your linear MPC controller

using the getCodeGenerationData function.
3 Optionally simulate your closed loop iteratively using the mpcmoveCodeGeneration function

and the data structures created in the previous step.
4 Create a coder configuration options object using the coder.gpuConfig function, and configure

the code generation options.
5 Generate code for the mpcmoveCodeGeneration function using the codegen function and the

coder configuration options object. Doing so generates a new function which uses code running
on the GPU.

6 Simulate your controller using the new generated function and the data structures.

 Generate Code and Deploy Controller to Real-Time Targets

10-3

For an example on using GPU code in MATLAB, see “Use the GPU to Compute MPC Moves in
MATLAB” on page 10-25

You can generate and use GPU code from the MPC Controller, Adaptive MPC Controller, or Explicit
MPC Controller blocks.

To generate GPU code from a Simulink model containing any of these blocks, open the Configuration
Parameters dialog box by clicking Model Settings. Then, in the Code Generation section, select
Generate GPU code.

For details on how to configure your model for GPU code generation, see “Code Generation from
Simulink Models with GPU Coder” (GPU Coder).

Sampling Rate in Real-Time Environment
The sampling rate that a controller can achieve in a real-time environment is system-dependent. For
example, for a typical small MIMO control application running on Simulink Real-Time, the sample
time can be as long as 1–10 ms for linear MPC and 100–1000 ms for nonlinear MPC. To determine the
sample time, first test a less-aggressive controller whose sampling rate produces acceptable
performance on the target. Next, decrease the sample time and monitor the execution time of the
controller. You can further decrease the sample time as long as the optimization safely completes
within each sampling period under normal plant operating conditions. To reduce the sample time, you
can also consider using:

• Explicit MPC. While explicit MPC controllers have a faster execution time, they also have a larger
memory footprint, since they store precomputed control laws. For more information, see “Explicit
MPC Design”.

• A suboptimal QP solution after a specified number of maximum solver iterations. For more
information, see “Suboptimal QP Solution” on page 2-18.

Tip A lower controller sample time does not necessarily provide better performance. In fact, you
want to choose a sample time that is small enough to give you good performance but no smaller. For
the same prediction time, smaller sample times result in larger prediction steps, which in turn
produces a larger memory footprint and more complex optimization problem.

QP Problem Construction for Generated C Code
At each control interval, an implicit or adaptive MPC controller constructs a new QP problem, which
is defined as:

Min
x

(1
2x⊺Hx + f⊺x)

subject to the linear inequality constraints

Ax ≤ b

where

• x is the solution vector.
• H is the Hessian matrix.

10 Code Generation

10-4

• A is a matrix of linear constraint coefficients.
• f and b are vectors.

In generated C code, the following matrices are used to provide H, A, f, and b. Depending on the type
and configuration of the MPC controller, these matrices are either constant or regenerated at each
control interval.

Const
ant
Matrix

Size Purpose Implicit MPC Implicit MPC
with Online
Weight Tuning

Adaptive MPC
or LTV MPC

Hinv NM-by-NM Inverse of the
Hessian matrix,
H

Constant Regenerated Regenerated

Linv NM-by-NM Inverse of the
lower-triangular
Cholesky
decomposition of
H

Ac NC-by-NM Linear constraint
coefficients, A

Constant

Kx Nxqp-by-(NM–1) Used to generate
f

Regenerated
Kr p*Ny-by-(NM–1)
Ku1 Nmv-by-(NM–1)
Kv (Nmd+1)*(p+1)-

by-(NM–1)
Kut p*Nmv-by-(NM–1)
Mlim NC-by-1 Used to generate

b
Constant Constant, except

when there are
custom
constraints

Mx NC-by-Nxqp Regenerated
Mu1 NC-by-Nmv

Mv NC-by-(Nmd
+1)*(p+1)

Here:

• p is the prediction horizon.
• Nmv is the number of manipulated variables.
• Nmd is the number of measured disturbances.
• Ny is the number of output variables.
• NM is the number of optimization variables (m*Nmv+1, where m is the control horizon).
• Nxqp is the number of states used for the QP problem; that is, the total number of the plant states

and disturbance model states.
• NC is the total number of constraints.

 Generate Code and Deploy Controller to Real-Time Targets

10-5

At each control interval, the generated C code computes f and b as:

f = Kx⊺ ∗ xq + Kr⊺ ∗ rp + Ku1⊺ ∗ml + Kv⊺ ∗ vp + Kut⊺ ∗ ut

b = − Mlim + Mx ∗ xq + Mu1 ∗ml + Mv ∗ vp

where

• xq is the vector of plant and disturbance model states estimated by the Kalman filter.
• ml is the manipulated variable move from the previous control interval.
• ut is the manipulated variable target.
• vp is the sequence of measured disturbance signals across the prediction horizon.
• rp is the sequence of reference signals across the prediction horizon.

Note When generating code in MATLAB, the getCodeGenerationData command generates these
matrices and returns them in configData.

Code Generation for Custom QP Solvers
You can generate code for linear MPC controllers that use a custom QP solver written in C or
MATLAB code. The controller calls this solver in place of the built-in QP solver at each control
interval.

For an example, see “Simulate and Generate Code for MPC Controller with Custom QP Solver” on
page 10-56. For more information on custom QP solvers, see “Custom QP Solver” on page 2-19.

For information on using the FORCESPRO solver, see “Implement MPC Controllers using Embotech
FORCESPRO Solvers” on page 10-67.

See Also
Functions
mpcmoveCodeGeneration | nlmpcmoveCodeGeneration | review

Blocks
MPC Controller | Multiple MPC Controllers | Explicit MPC Controller | Multiple Explicit MPC
Controllers | Adaptive MPC Controller | Nonlinear MPC Controller

More About
• “Simulation and Code Generation Using Simulink Coder” on page 10-13
• “Simulation and Structured Text Generation Using Simulink PLC Coder” on page 10-20
• “Generate Code to Compute Optimal MPC Moves in MATLAB” on page 10-7

10 Code Generation

10-6

Generate Code to Compute Optimal MPC Moves in MATLAB
This example shows how to use the mpcmoveCodeGeneration command to generate C code to
compute optimal MPC control moves for real-time applications.

After simulating the controller using mpcmove, you use mpcmoveCodeGeneration to simulate the
controller using optimized data structures, reproducing the same results. Then you generate an
executable having the same inputs and outputs as mpcmoveCodeGeneration. Finally, you use the
generated executable to simulate the controller, using the same code and data structures you used
for mpcmoveCodeGeneration.

Plant Model

The plant is a single-input, single-output, stable, 2nd order linear plant.

plant = tf(5,[1 0.8 3]);

Set a sampling time of one second, convert the plant to discrete-time, state-space form, and specify a
zero initial states vector.

Ts = 1;
plant = ss(c2d(plant,Ts));
x0 = zeros(size(plant.B,1),1);

Design MPC Controller

Create an MPC controller with default horizons and the specified sampling time.

mpcobj = mpc(plant,Ts);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Specify controller tuning weights.

mpcobj.Weights.MV = 0;
mpcobj.Weights.MVrate = 0.5;
mpcobj.Weights.OV = 1;

Specify initial constraints on the manipulated variable and plant output. These constraints will be
updated at run time.

mpcobj.MV.Min = -1;
mpcobj.MV.Max = 1;
mpcobj.OV.Min = -1;
mpcobj.OV.Max = 1;

Simulate Online Constraint Changes with mpcmove Command

In the closed-loop simulation, constraints are updated and fed into the mpcmove command at each
control interval.

yMPCMOVE = [];
uMPCMOVE = [];

 Generate Code to Compute Optimal MPC Moves in MATLAB

10-7

Set the simulation time.

Tsim = 20;

Initialize the online constraint data.

MVMinData = -0.2-[1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 ...
 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1];
MVMaxData = 0.2+[1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 ...
 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1];
OVMinData = -0.2-[1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 ...
 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1];
OVMaxData = 0.2+[1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 ...
 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1];

Initialize plant states.

x = x0;

Initialize MPC states. Note that xmpc is an handle object pointing to the current (always updated)
state of the controller.

xmpc = mpcstate(mpcobj);

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Run a closed-loop simulation by calling mpcmove in a loop.

options = mpcmoveopt;
for ct = 1:round(Tsim/Ts)+1
 % Update and store plant output.
 y = plant.C*x;
 yMPCMOVE = [yMPCMOVE y];
 % Update constraints.
 options.MVMin = MVMinData(ct);
 options.MVMax = MVMaxData(ct);
 options.OutputMin = OVMinData(ct);
 options.OutputMax = OVMaxData(ct);
 % Compute control actions and store plant input.
 u = mpcmove(mpcobj,xmpc,y,1,[],options);
 uMPCMOVE = [uMPCMOVE u];
 % Update plant state.
 x = plant.A*x + plant.B*u;
end

Validate Simulation Results with mpcmoveCodeGeneration Command

To prepare for generating code that computes optimal control moves from MATLAB, it is
recommended to reproduce the same control results with the mpcmoveCodeGeneration command
before using the codegen command from the MATLAB Coder product.

yCodeGen = [];
uCodeGen = [];

Initialize plant states.

x = x0;

10 Code Generation

10-8

Create data structures to use with mpcmoveCodeGeneration using getCodeGenerationData.

[coredata,statedata,onlinedata] = getCodeGenerationData(mpcobj);

Run a closed-loop simulation by calling mpcmoveCodeGeneration in a loop.

for ct = 1:round(Tsim/Ts)+1
 % Update and store plant output.
 y = plant.C*x;
 yCodeGen = [yCodeGen y];
 % Update measured output in online data.
 onlinedata.signals.ym = y;
 % Update reference in online data.
 onlinedata.signals.ref = 1;
 % Update constraints in online data.
 onlinedata.limits.umin = MVMinData(ct);
 onlinedata.limits.umax = MVMaxData(ct);
 onlinedata.limits.ymin = OVMinData(ct);
 onlinedata.limits.ymax = OVMaxData(ct);
 % Compute and store control action.
 [u,statedata] = mpcmoveCodeGeneration(coredata,statedata,onlinedata);
 uCodeGen = [uCodeGen u];
 % Update plant state.
 x = plant.A*x + plant.B*u;
end

The simulation results are identical to those obtained using mpcmove.

t = 0:Ts:Tsim;
figure;
subplot(1,2,1)
plot(t,yMPCMOVE,'--*',t,yCodeGen,'o');
grid
legend('mpcmove','codegen')
title('Plant Output')
subplot(1,2,2)
plot(t,uMPCMOVE,'--*',t,uCodeGen,'o');
grid
legend('mpcmove','codegen')
title('Controller Moves')

 Generate Code to Compute Optimal MPC Moves in MATLAB

10-9

Generate MEX Function From mpcmoveCodeGeneration Command

To generate C code from the mpcmoveCodeGeneration command, use the codegen command from
the MATLAB Coder product. In this example, generate a MEX function mpcmoveMEX to reproduce the
simulation results in MATLAB. You can change the code generation target to C/C++ static library,
dynamic library, executable, etc. by using a different set of coder.config settings.

When generating C code for the mpcmoveCodeGeneration command:

• Since no data integrity checks are performed on the input arguments, you must make sure that all
the input data has the correct types, dimensions, and values.

• You must define the first input argument, mpcmove_struct, as a constant when using the
codegen command.

• The second input argument, mpcmove_state, is updated by the command and returned as the
second output. In most cases, you do not need to modify its contents and should simply pass it
back to the command in the next control interval. The only exception is when custom state
estimation is enabled, in which case you must provide the current state estimation using this
argument.

% check MATLAB coder license
if ~license ('test', 'MATLAB_Coder')
 disp('MATLAB Coder(TM) is required to run this example.')
 return
end

Generate MEX function.

10 Code Generation

10-10

fun = 'mpcmoveCodeGeneration';
funOutput = 'mpcmoveMEX';
Cfg = coder.config('mex');
Cfg.DynamicMemoryAllocation = 'off';
codegen('-config',Cfg,fun,'-o',funOutput,'-args',...
 {coder.Constant(coredata),statedata,onlinedata});

Code generation successful.

Initialize data storage.

yMEX = [];
uMEX = [];

Initialize plant states.

x = x0;

Use getCodeGenerationData to create data structures to use with mpcmoveCodeGeneration.

[coredata,statedata,onlinedata] = getCodeGenerationData(mpcobj);

Run a closed-loop simulation by calling the generated mpcmoveMEX functions in a loop.

for ct = 1:round(Tsim/Ts)+1
 % Update and store the plant output.
 y = plant.C*x;
 yMEX = [yMEX y];
 % Update measured output in online data.
 onlinedata.signals.ym = y;
 % Update reference in online data.
 onlinedata.signals.ref = 1;
 % Update constraints in online data.
 onlinedata.limits.umin = MVMinData(ct);
 onlinedata.limits.umax = MVMaxData(ct);
 onlinedata.limits.ymin = OVMinData(ct);
 onlinedata.limits.ymax = OVMaxData(ct);
 % Compute and store control action.
 [u,statedata] = mpcmoveMEX(coredata,statedata,onlinedata);
 uMEX = [uMEX u];
 % Update plant state.
 x = plant.A*x + plant.B*u;
end

The simulation results are identical to those obtained using mpcmove.

figure
subplot(1,2,1)
plot(t,yMPCMOVE,'--*',t,yMEX,'o')
grid
legend('mpcmove','mex')
title('Plant Output')
subplot(1,2,2)
plot(t,uMPCMOVE,'--*',t,uMEX,'o')
grid
legend('mpcmove','mex')
title('Controller Moves')

 Generate Code to Compute Optimal MPC Moves in MATLAB

10-11

See Also
mpcmoveCodeGeneration | getCodeGenerationData

More About
• “Generate Code and Deploy Controller to Real-Time Targets” on page 10-2

10 Code Generation

10-12

Simulation and Code Generation Using Simulink Coder
This example shows how to simulate and generate real-time code for an MPC Controller block with
Simulink® Coder™. Code can be generated in both single and double precisions.

Required Products

To run this example, Simulink and Simulink Coder are required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink is required to run this example.')
 return
end
if ~mpcchecktoolboxinstalled('simulinkcoder')
 disp('Simulink Coder is required to run this example.');
 return
end

Configure Environment

You must have write-permission to generate the relevant files and the executable. Therefore, before
starting simulation and code generation, change the current directory to a temporary directory.

cwd = pwd;
tmpdir = tempname;
mkdir(tmpdir);
cd(tmpdir);

Define Plant Model and MPC Controller

Define a SISO plant.

plant = ss(tf([3 1],[1 0.6 1]));

Define the MPC controller for the plant.

Ts = 0.1; %Sample time
p = 10; %Prediction horizon
m = 2; %Control horizon
Weights = struct('MV',0,'MVRate',0.01,'OV',1); % Weights
MV = struct('Min',-Inf,'Max',Inf,'RateMin',-100,'RateMax',100); % Input constraints
OV = struct('Min',-2,'Max',2); % Output constraints
mpcobj = mpc(plant,Ts,p,m,Weights,MV,OV);

Simulate and Generate Code in Double-Precision

By default, MPC Controller blocks use double-precision data for simulation and code generation.

Simulate the model in Simulink.

mdl1 = 'mpc_rtwdemo';
open_system(mdl1)
sim(mdl1)

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Simulation and Code Generation Using Simulink Coder

10-13

The controller effort and the plant output are saved into base workspace as variables u and y,
respectively.

Build the model with the slbuild command.

disp('Generating C code... Please wait until it finishes.')
set_param(mdl1,'RTWVerbose','off')
slbuild(mdl1);

Generating C code... Please wait until it finishes.
Starting build procedure for: mpc_rtwdemo
Successful completion of build procedure for: mpc_rtwdemo

Build Summary

Top model targets built:

Model Action Rebuild Reason
==
mpc_rtwdemo Code generated and compiled Code generation information file does not exist.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 39.397s

On a Windows® system, an executable file named mpc_rtwdemo.exe appears in the temporary
directory after the build process finishes.

Run the executable.

if ispc
 disp('Running executable...')
 status = system(mdl1);
else
 disp('The example only runs the executable on Windows system.')
end

Running executable...

10 Code Generation

10-14

** starting the model **
** created mpc_rtwdemo.mat **

After the executable completes successfully (status=0), a data file named mpc_rtwdemo.mat appears
in the temporary directory.

Compare the responses from the generated code (rt_u and rt_y) with the responses from the
previous simulation in Simulink (u and y).

 Simulation and Code Generation Using Simulink Coder

10-15

The responses are numerically equal.

Simulate and Generate Code in Single-Precision

You can also configure the MPC block to use single-precision data in simulation and code generation.

mdl2 = 'mpc_rtwdemo_single';
open_system(mdl2)

10 Code Generation

10-16

To do so, set the Output data type property of the MPC Controller block to single.

Simulate the model in Simulink.

sim(mdl2)

The controller effort and the plant output are saved into base workspace as variables u1 and y1,
respectively.

Build the model with the slbuild command.

disp('Generating C code... Please wait until it finishes.')
set_param(mdl2,'RTWVerbose','off')
slbuild(mdl2);

Generating C code... Please wait until it finishes.
Starting build procedure for: mpc_rtwdemo_single
Successful completion of build procedure for: mpc_rtwdemo_single

Build Summary

Top model targets built:

Model Action Rebuild Reason
===
mpc_rtwdemo_single Code generated and compiled Code generation information file does not exist.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 37.678s

On a Windows system, an executable file named mpc_rtwdemo_single.exe appears in the
temporary directory after the build process finishes

Run the executable.

if ispc
 disp('Running executable...')

 Simulation and Code Generation Using Simulink Coder

10-17

 status = system(mdl2);
else
 disp('The example only runs the executable on Windows system.')
end

Running executable...

** starting the model **
** created mpc_rtwdemo_single.mat **

After the executable completes successfully (status=0), a data file named
mpc_rtwdemo_single.mat appears in the temporary directory.

Compare the responses from the generated code (rt_u1 and rt_y1) with the responses from the
previous simulation in Simulink (u1 and y1).

10 Code Generation

10-18

The responses are numerically equal.

Close the Simulink models, and return to the original directory.

bdclose(mdl1)
bdclose(mdl2)
cd(cwd)

See Also

More About
• “Generate Code and Deploy Controller to Real-Time Targets” on page 10-2

 Simulation and Code Generation Using Simulink Coder

10-19

Simulation and Structured Text Generation Using Simulink PLC
Coder

This example shows how to simulate and generate Structured Text for an MPC Controller block using
Simulink® PLC Coder™ software. The generated code uses single-precision.

Required Products

To run this example, Simulink and Simulink PLC Coder are required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink is required to run this example.')
 return
end
if ~mpcchecktoolboxinstalled('plccoder')
 disp('Simulink PLC Coder is required to run this example.');
 return
end

Setup Environment

You must have write-permission to generate the relevant files and the executable. Therefore, before
starting simulation and code generation, change the current directory to a temporary directory.

cwd = pwd;
tmpdir = tempname;
mkdir(tmpdir);
cd(tmpdir);

Define Plant Model and MPC Controller

Define a SISO plant.

plant = ss(tf([3 1],[1 0.6 1]));

Define the MPC controller for the plant.

Ts = 0.1; %Sample time
p = 10; %Prediction horizon
m = 2; %Control horizon
Weights = struct('MV',0,'MVRate',0.01,'OV',1); % Weights
MV = struct('Min',-Inf,'Max',Inf,'RateMin',-100,'RateMax',100); % Input constraints
OV = struct('Min',-2,'Max',2); % Output constraints
mpcobj = mpc(plant,Ts,p,m,Weights,MV,OV);

Simulate and Generate Structured Text

Open the Simulink model.

mdl = 'mpc_plcdemo';
open_system(mdl)

10 Code Generation

10-20

To generate structured text for the MPC Controller block, complete the following two steps:

• Configure the MPC block to use single-precision data. Set the Output data type property of the
MPC Controller block to single.

open_system([mdl '/Control System/MPC Controller'])

• Put the MPC block inside a subsystem block and treat the subsystem block as an atomic unit.
Select the Treat as atomic unit property of the subsystem block.

 Simulation and Structured Text Generation Using Simulink PLC Coder

10-21

Simulate the model in Simulink.

close_system([mdl '/Control System/MPC Controller'])
open_system([mdl '/Outputs//References'])
open_system([mdl '/Inputs'])
sim(mdl)

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

10 Code Generation

10-22

To generate code with the PLC Coder, use the plcgeneratecode command.

disp('Generating PLC structure text... Please wait until it finishes.')
plcgeneratecode([mdl '/Control System']);

 Simulation and Structured Text Generation Using Simulink PLC Coder

10-23

Generating PLC structure text... Please wait until it finishes.
Generating PLC code for 'mpc_plcdemo/Control System'.
Using model settings from 'mpc_plcdemo' for PLC code generation parameters.
Begin code generation for IDE codesys23.
Emit PLC code to file.
Creating PLC code generation report mpc_plcdemo_codegen_rpt.html.
PLC code generation successful for 'mpc_plcdemo/Control System'.
Generated files:
plcsrc\mpc_plcdemo.exp

The Message Viewer dialog box shows that PLC code generation was successful.

Close the Simulink model, and return to the original directory.

bdclose(mdl)
cd(cwd)

See Also

More About
• “Generate Code and Deploy Controller to Real-Time Targets” on page 10-2

10 Code Generation

10-24

Use the GPU to Compute MPC Moves in MATLAB
This example shows how to generate CUDA code and use the GPU to compute optimal MPC moves in
MATLAB™, using the mpcmoveCodeGeneration function.

Create Plant Model and Design MPC Controller

Fix random generator seed for reproducibility.

rng(0);

Create a discrete-time strictly proper plant with 10 states, 3 inputs, and 3 outputs.

plant = drss(10,3,3);
plant.D = 0;

Create a random initial state for the plant, to be used later in simulation.

x0 = rand(10,1);

Create an MPC controller with sampling time 0.1 seconds and default prediction and control
horizons.

mpcobj = mpc(plant,0.1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Specify random constraints on the manipulated and measured variables.

for ct=1:3
 mpcobj.MV(ct).Min = -1*rand;
 mpcobj.MV(ct).Max = 1*rand;
end

for ct=1:3
 mpcobj.OV(ct).Min = -10*rand;
 mpcobj.OV(ct).Max = 10*rand;
end

Get handle to mpcobj internal state.

xmpc=mpcstate(mpcobj);

-->No sample time provided for plant model. Assuming sample time = controller's sample time = 0.1.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->Assuming output disturbance added to measured output channel #3 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Simulate Closed Loop Using mpcmove

Before generating the code, simulate the plant in closed loop using mpcmove to make sure the
behavior is acceptable. For this example, the result of the simulation with mpcmove is stored so it can
be later compared to the simulation using generated code.

 Use the GPU to Compute MPC Moves in MATLAB

10-25

Initialize arrays that will store moves and outputs for later plotting.

yMV = [];
uMV = [];

Initialize plant and controller states.

x = x0;
xmpc.Plant=x0;

Run a closed-loop simulation by calling mpcmove in a loop for 5 steps.

for ct = 1:5
 % Update and store the plant output.
 y = plant.C*x;
 yMV = [yMV y];
 % Compute control actions with ref = ones(1,3)
 u = mpcmove(mpcobj,xmpc,y,ones(1,3));
 % Update and store the plant state.
 x = plant.A*x + plant.B*u;
 uMV = [uMV u];
end

Create Data Structures for Code Generation and Simulation

Reset controller initial conditions.

xmpc.Plant=x0;
xmpc.Disturbance=zeros(1,3);
xmpc.LastMove=zeros(1,3);

Use getCodeGenerationData to create the three structures needed for code generation and
simulation from the MPC object and its initial state. The coredata structure contains the main
configuration parameters of the MPC controller that are constant at run time. The statedata
structure contains the states of the MPC controller, such as for example the state of the plant model,
the estimated disturbance, the covariance matrix, and the last control move. The onlinedata
structure contains data that you must update at each control interval, such as measurement and
reference signals, constraints, and weights.

[coredata,statedata,onlinedata] = getCodeGenerationData(mpcobj,'InitialState',xmpc);

Store the initial state data structure for later re-initialization.

statedata0=statedata;

Simulate Closed Loop Using mpcmoveCodeGeneration

The mpcmoveCodeGeneration function allows you to simulate the MPC controller in closed loop in a
manner similar to mpcmove. It takes in the three controller data structures, where statedata and
onlinedata represent the current values of the controller states and input signals, respectively, and
calculates the optimal control move and the new value of the controller states. You can then generate
code from mpcmoveCodeGeneration (in this example also CUDA code) and compile it to an
executable file (in this example one running on the GPU) which has the same inputs and outputs and
therefore can be called from MATLAB in exactly the same way.

Initialize arrays to store moves and outputs for later plotting.

10 Code Generation

10-26

yCDG = [];
uCDG = [];

Initialize plant and controller states.

x = x0;
statedata=statedata0;

Run a closed-loop simulation by calling mpcmoveCodeGeneration in a loop for 5 steps.

for ct = 1:5
 % Update and store the plant output.
 y = plant.C*x;
 yCDG = [yCDG y];
 % Update measured output and reference in online data.
 onlinedata.signals.ym = y;
 onlinedata.signals.ref = ones(1,3);
 % Compute control actions.
 [u,statedata] = mpcmoveCodeGeneration(coredata,statedata,onlinedata);
 % Update and store the plant state.
 x = plant.A*x + plant.B*u;
 uCDG = [uCDG u];
end

Generate MEX Function for GPU Execution

Create a GPU coder configuration option object using the coder.gpuConfig function, and configure
the code generation options.

CfgGPU = coder.gpuConfig('mex');
CfgGPU.TargetLang = 'C++';
CfgGPU.EnableVariableSizing = false;
CfgCPU.ConstantInputs = 'IgnoreValues';

Generate the MEX function mympcmoveGPU from the mpcmoveCodeGeneration MATLAB function,
using the codegen command. This command generates CUDA code and compiles it to obtain the
MEX executable file mympcmoveGPU which runs on the GPU.

codegen('-config',CfgGPU,'mpcmoveCodeGeneration','-o','mympcmoveGPU','-args',{coder.Constant(coredata),statedata,onlinedata});

Code generation successful.

Simulate Closed Loop Using mympcmoveGPU

Initialize arrays that will store moves and outputs for later plotting.

yGPU = [];
uGPU = [];

Initialize plant and controller states.

x = x0;
statedata=statedata0;

Run a closed-loop simulation by calling mympcmoveGPU in a loop for 5 steps.

for ct = 1:5
 % Update and store the plant output.
 y = plant.C*x;

 Use the GPU to Compute MPC Moves in MATLAB

10-27

 yGPU = [yGPU y];
 % Update measured output and reference in online data.
 onlinedata.signals.ym = y;
 onlinedata.signals.ref = ones(1,3);
 % Compute control actions.
 [u,statedata] = mympcmoveGPU(coredata,statedata,onlinedata);
 % Update and store the plant state.
 x = plant.A*x + plant.B*u;
 uGPU = [uGPU u];
end

Generate MEX Function for CPU Execution

Create a coder configuration option object using the coder.Config function, and configure the code
generation options.

CfgCPU = coder.config('mex');
CfgCPU.DynamicMemoryAllocation='off';
CfgCPU.EnableVariableSizing = false;
CfgCPU.ConstantInputs = 'IgnoreValues';

Generate the MEX function mympcmoveCPU from the mpcmoveCodeGeneration MATLAB function,
using the codegen command. This command generates C code and compiles it to obtain the MEX
executable file mympcmoveCPU which runs on the CPU.

codegen('-config',CfgCPU,'mpcmoveCodeGeneration','-o','mympcmoveCPU','-args',{coder.Constant(coredata),statedata,onlinedata});

Code generation successful.

Simulate Closed Loop Using mympcmoveCPU

Initialize arrays that will store moves and outputs for later plotting.

yCPU = [];
uCPU = [];

Initialize plant and controller states.

x = x0;
statedata=statedata0;

Run a closed-loop simulation by calling mympcmoveCPU in a loop for 5 steps.

for ct = 1:5
 % Update and store the plant output.
 y = plant.C*x;
 yCPU = [yCPU y];
 % Update measured output and reference in online data.
 onlinedata.signals.ym = y;
 onlinedata.signals.ref = ones(1,3);
 % Compute control actions.
 [u,statedata] = mympcmoveCPU(coredata,statedata,onlinedata);
 % Update and store the plant state.
 x = plant.A*x + plant.B*u;
 uCPU = [uCPU u];
end

10 Code Generation

10-28

Compare MPC Moves

First, compare the plant inputs and outputs obtained from mpcmove and the ones obtained using the
GPU.

uGPU-uMV

ans = 3×5
10-15 ×

 0.3886 0.1110 0.3886 -0.2220 -0.7772
 -0.2776 -0.0555 -0.3886 -0.7494 0.0694
 -0.0035 0.0555 0.2359 0.0278 -0.0833

yGPU-yMV

ans = 3×5
10-14 ×

 0 -0.1110 -0.0333 -0.1332 -0.0333
 0 -0.1776 -0.0444 -0.4219 -0.2665
 0 -0.0222 0.0222 -0.0666 0.1332

The simulation results are identical, except for negligible numerical errors, to those using mpcmove.

uCPU-uMV

ans = 3×5
10-14 ×

 0.0278 0.0389 -0.0167 -0.0389 -0.0167
 0.0611 -0.0056 -0.0749 -0.1013 0.0291
 0 0.0333 0.0833 -0.0111 -0.0611

yCPU-yMV

ans = 3×5
10-14 ×

 0 0.0111 -0.0777 0.1554 -0.0444
 0 0.2331 0 -0.2887 -0.1998
 0 -0.1332 -0.0444 -0.1332 0.0666

Similarly the difference between results obtained by running the mpcmoveCodeGeneration in
MATLAB and running the generated code on the CPU is negligible.

uCPU-uCDG

ans = 3×5
10-14 ×

 0 -0.1554 -0.1887 -0.1055 -0.0500
 -0.0444 0 -0.0111 -0.0985 -0.0180
 0 0.0278 -0.0111 -0.0444 -0.1027

 Use the GPU to Compute MPC Moves in MATLAB

10-29

yCPU-yCDG

ans = 3×5
10-14 ×

 0 -0.0555 0.4663 0.3997 0.3553
 0 -0.1443 0.1332 0.0444 -0.2220
 0 0.0666 0.0888 0.0666 0.3331

See Also

More About
• “Generate Code and Deploy Controller to Real-Time Targets” on page 10-2

10 Code Generation

10-30

Use the GPU to Simulate an MPC Controller in Simulink
This example shows how to generate CUDA code and use the GPU to compute optimal MPC moves in
Simulink™.

Create Plant Model and Design MPC Controller

Use a double integrator as a plant.

plant = tf(1,[1 0 0]);

Create an MPC object for the plant with a sampling time of 0.1 seconds, and prediction and control
horizon of 10 and 3 steps, respectively.

mpcobj = mpc(plant, 0.1, 10, 3);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Limit the manipulated variable between –1 and 1.

mpcobj.MV = struct('Min',-1,'Max',1);

Control the Plant Model in Simulink

Create a Simulink closed loop simulation using the MPC Controller block, with the mpcobj object
passed as a parameter, to control the double integrator plant. For this example, open the pre-existing
gpudemo Simulink model.

open_system('gpudemo')

Open the Configuration Parameters dialog box by clicking Model Settings. Then, in the Code
Generation section, select Generate GPU code.

 Use the GPU to Simulate an MPC Controller in Simulink

10-31

You can now run the model by clicking Run or by using the MATLAB command sim. Before running
the simulation the model will generate CUDA code from the Simulink model and compile it to obtain a
MEX executable. When the model is simulated, this file is called and the simulation is performed on
the GPU.

sim('gpudemo')

-->Converting the "Model.Plant" property of "mpc" object to state-space.
-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

After the simulation, the plots of the two scopes show that the manipulated variable does not exceed
the limit and the plant output tracks the reference signal after approximately 3 seconds.

10 Code Generation

10-32

Here, the entire Simulink model is executed on the GPU. To deploy only the MPC block on the GPU,
you can create a model having only the MPC block inside. Typically in embedded control modules, the
deployed model contains the controller block plus a few interface blocks for input/output signals.

See Also

More About
• “Generate Code and Deploy Controller to Real-Time Targets” on page 10-2

 Use the GPU to Simulate an MPC Controller in Simulink

10-33

Using MPC Controller Block Inside Function-Call and Triggered
Subsystems

This example shows how to configure and simulate MPC Controller blocks placed inside Function-Call
and Triggered subsystems.

Define Plant Model and MPC Controller

Define a SISO plant.

plant = ss(tf([3 1],[1 0.6 1]));

Define the MPC controller for the plant.

Ts = 0.1; %Sampling time
p = 10; %Prediction horizon
m = 2; %Control horizon
Weights = struct('MV',0,'MVRate',0.01,'OV',1); % Weights
MV = struct('Min',-Inf,'Max',Inf,'RateMin',-100,'RateMax',100); % Input constraints
OV = struct('Min',-2,'Max',2); % Output constraints
mpcobj = mpc(plant,Ts,p,m,Weights,MV,OV);

Configure and Simulate MPC Controller Block Inside Function-Call Subsystem

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end

Function-Call subsystem is invoked directly by another block during simulation. To ensure that the
MPC controller works properly inside a Function-Call subsystem, you must configure the MPC
Controller block to use inherited sample time and invoke the Function-Call subsystem periodically
with the same sample time defined in the MPC controller object.

Open the model.

mdl1 = 'mpc_rtwdemo_functioncall';
open_system(mdl1)

10 Code Generation

10-34

The MPC Controller block is inside the MPC in Triggered Subsystem block.

open_system([mdl1 '/MPC in Function-Call Subsystem'])

Configure the controller to use an inherited sample time. To do so, select the Inherit sample time
property of the MPC Controller block.

Invoke the Function-Call subsystem periodically with the correct sample time.

For this example, since the controller has a sample time of 0.1 seconds, configure the trigger block
inside the Function-Call subsystem to use the same sample time.

 Using MPC Controller Block Inside Function-Call and Triggered Subsystems

10-35

For this example, use the Function-Call Generator block to execute the Function-Call subsystem at
the sample rate as 0.1 seconds.

10 Code Generation

10-36

Simulate the model.

close_system([mdl1 '/MPC in Function-Call Subsystem/MPC Controller'])
open_system([mdl1 '/Inputs'])
open_system([mdl1 '/Outputs//References'])
sim(mdl1)

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Using MPC Controller Block Inside Function-Call and Triggered Subsystems

10-37

The controller effort and the plant output are saved into base workspace as variables u_fc and y_fc,
respectively.

Close the Simulink model.

bdclose(mdl1)

10 Code Generation

10-38

Configure and Simulate MPC Controller Block Inside Triggered Subsystem

Triggered subsystem executes each time a trigger event occurs. To ensure that the MPC controller
works properly inside a triggered subsystem, you must configure the MPC Controller block to use
inherited sample time and invoke the Triggered subsystem periodically with the same sample time
defined in the MPC controller object.

Open the model.

mdl2 = 'mpc_rtwdemo_triggered';
open_system(mdl2)

The MPC Controller block is in the MPC in Triggered Subsystem block.

open_system([mdl2 '/MPC in Triggered Subsystem']);

Configure the MPC block to use an inherited sample time, as you did for the function-call subsystem
model.

Execute the Triggered subsystem periodically with the correct sample time.

For this example, configure the Trigger block inside the triggered subsystem to use a falling
trigger type.

 Using MPC Controller Block Inside Function-Call and Triggered Subsystems

10-39

For this example, use the Pulse Generator block to provide a periodic triggering signal at the sample
rate as 0.1 seconds.

10 Code Generation

10-40

Simulate the model.

close_system([mdl2 '/MPC in Triggered Subsystem/MPC Controller'])
open_system([mdl2 '/Inputs'])
open_system([mdl2 '/Outputs//References'])
sim(mdl2)

 Using MPC Controller Block Inside Function-Call and Triggered Subsystems

10-41

The controller effort and the plant output are saved into base workspace as variables u_tr and y_tr,
respectively.

Close the Simulink model.

bdclose(mdl2)

10 Code Generation

10-42

Compare Responses

Compare the simulation results from the Function-Call subsystem and the Triggered subsystem with
the result generated by an MPC Controller block that is not placed inside a subsystem and does not
inherit sample time.

mdl = 'mpc_rtwdemo';
open_system(mdl)
sim(mdl)

Compare the responses of the manipulated variable.

figure
plot(t,u,'b-',t,u_fc,'ro',t(1:end-1),u_tr,'k.')
title('Manipulated Variable')
legend('No Subsystem','Function-Call','Triggered')

 Using MPC Controller Block Inside Function-Call and Triggered Subsystems

10-43

Compare the responses the plant output.

figure
plot(t,y,'b-',t,y_fc,'ro',t(1:end-1),y_tr,'k.')
title('Plant Output')
legend('No Subsystem','Function-Call','Triggered')

10 Code Generation

10-44

The results of all three models are numerically equal.

Close the Simulink model.

bdclose(mdl)

See Also
Function-Call Subsystem | Triggered Subsystem

More About
• “Choose Sample Time and Horizons” on page 1-2

 Using MPC Controller Block Inside Function-Call and Triggered Subsystems

10-45

Solve Custom MPC Quadratic Programming Problem and
Generate Code

This example shows how to use the built-in active-set QP solver to implement a custom MPC
algorithm that supports C code generation in MATLAB.

Define Plant Model

The plant model is a discrete-time state-space system and it is open-loop unstable. We assume that all
the plant states are measurable. Therefore, we avoid the need for designing a state estimator, which
is beyond the scope of this example.

A = [1.1 2; 0 0.95];
B = [0; 0.0787];
C = [-1 1];
D = 0;
Ts = 1;
sys = ss(A,B,C,D,Ts);
x0 = [0.5;-0.5]; % initial states at [0.5 -0.5]

Design Unconstrained Linear Quadratic Regulator (LQR)

Design an unconstrained LQR with output weighting. This controller serves as the baseline to
compare with the custom MPC algorithm. The LQ control law is u(k) = -K_lqr*x(k).

Qy = 1;
R = 0.01;
K_lqr = lqry(sys,Qy,R);

Run a simulation with initial states at [0.5 -0.5]. The closed-loop response is stable.

t_unconstrained = 0:1:10;
u_unconstrained = zeros(size(t_unconstrained));
Unconstrained_LQR = tf([-1 1])*feedback(ss(A,B,eye(2),0,Ts),K_lqr);
lsim(Unconstrained_LQR,'-',u_unconstrained,t_unconstrained,x0);
hold on

10 Code Generation

10-46

Design Custom MPC Controller with Terminal Weight

Design a custom MPC controller with the terminal weight applied at the last prediction step.

The predicted state sequences, X(k), generated by the linear model and input sequence, U(k), can be
formulated as: X(k) = M*x(k) + CONV*U(k). In this example, use four prediction steps (N = 4).

M = [A;A^2;A^3;A^4];
CONV = [B zeros(2,1) zeros(2,1) zeros(2,1);...
 A*B B zeros(2,1) zeros(2,1);...
 A^2*B A*B B zeros(2,1);...
 A^3*B A^2*B A*B B];

The MPC objective function is J(k) = sum(x(k)'*Q*x(k) + u(k)'*R*u(k) + x(k
+N)'*Q_bar*x(k+N)). To ensure that the MPC objective function has the same quadratic cost as
the infinite horizon quadratic cost used by LQR, terminal weight Q_bar is obtained by solving the
following Lyapunov equation:

Q = C'*C;
Q_bar = dlyap((A-B*K_lqr)', Q+K_lqr'*R*K_lqr);

Convert the MPC problem into a standard QP problem, which has the objective function J(k) =
U(k)'*H*U(k) + 2*x(k)'*F'*U(k).

Q_hat = blkdiag(Q,Q,Q,Q_bar);
R_hat = blkdiag(R,R,R,R);
H = CONV'*Q_hat*CONV + R_hat;
F = CONV'*Q_hat*M;

 Solve Custom MPC Quadratic Programming Problem and Generate Code

10-47

When there are no constraints, the optimal predicted input sequence U(k) generated by MPC
controller is -K*x, where K = inv(H)*F.

K = H\F;

In practice, only the first control move u(k) = -K_mpc*x(k) is applied to the plant (receding
horizon control).

K_mpc = K(1,:);

Run a simulation with initial states at [0.5 -0.5]. The closed-loop response is stable.

Unconstrained_MPC = tf([-1 1])*feedback(ss(A,B,eye(2),0,Ts),K_mpc);
lsim(Unconstrained_MPC,'*',u_unconstrained,t_unconstrained,x0)
legend show

LQR and MPC controllers produce the same result because the control laws are the same.

K_lqr
K_mpc

K_lqr =

 4.3608 18.7401

K_mpc =

10 Code Generation

10-48

 4.3608 18.7401

LQR Control Performance Deteriorates When Applying Constraints

Restrict the controller output, u(k), to be between -1 and 1. The LQR controller generates a slow and
oscillatory closed-loop response due to saturation.

x = x0;
t_constrained = 0:40;
for ct = t_constrained
 uLQR(ct+1) = -K_lqr*x;
 uLQR(ct+1) = max(-1,min(1,uLQR(ct+1)));
 x = A*x+B*uLQR(ct+1);
 yLQR(ct+1) = C*x;
end
figure
subplot(2,1,1)
plot(t_constrained,uLQR)
xlabel('time')
ylabel('u')
subplot(2,1,2)
plot(t_constrained,yLQR)
xlabel('time')
ylabel('y')
legend('Constrained LQR')

 Solve Custom MPC Quadratic Programming Problem and Generate Code

10-49

MPC Controller Solves QP Problem Online When Applying Constraints

One of the major benefits of using MPC controller is that it handles input and output constraints
explicitly by solving an optimization problem at each control interval.

Use the built-in KWIK QP solver, mpcActiveSetSolver, to implement the custom MPC controller
designed above. The constraint matrices are defined as Ac*x>=b0.

Ac = [1 0 0 0;...
 -1 0 0 0;...
 0 1 0 0;...
 0 -1 0 0;...
 0 0 1 0;...
 0 0 -1 0;...
 0 0 0 1;...
 0 0 0 -1];
b0 = [1;1;1;1;1;1;1;1];

Since in this case the Hessian matrix H is constant, you can precalculate the inverse of its lower-
triangular Cholesky decomposition, and then pass it to the mpcActiveSetSolver function, instead
of passing the Hessian matrix directly. As a result, mpcActiveSetSolver can avoid performing this
computation at each time step.

L = chol(H,'lower');
Linv = L\eye(size(H,1));

Run a simulation by calling mpcActiveSetSolver at each simulation step. Initially all the
inequalities are inactive (cold start).

x = x0;
iA = false(size(b0));

% create options for the solver, and specify non-hessian first input
opt = mpcActiveSetOptions;
opt.IntegrityChecks = false;
opt.UseHessianAsInput = false;

for ct = t_constrained
 [u,status,iA] = mpcActiveSetSolver(Linv,F*x,Ac,b0,[],zeros(0,1),iA,opt);
 uMPC(ct+1) = u(1);
 x = A*x+B*uMPC(ct+1);
 yMPC(ct+1) = C*x;
end
figure
subplot(2,1,1)
plot(t_constrained,uMPC)
xlabel('time')
ylabel('u')
subplot(2,1,2)
plot(t_constrained,yMPC)
xlabel('time')
ylabel('y')
legend('Constrained MPC')

10 Code Generation

10-50

The MPC controller produces a closed-loop response with faster settling time and less oscillation.

Simulate Custom MPC Using MATLAB Function Block in Simulink

mpcActiveSetSolver can be used inside a MATLAB Function block to provide simulation and code
generation in the Simulink environment.

mdl = 'mpc_activesetqp';
open_system(mdl)

 Solve Custom MPC Quadratic Programming Problem and Generate Code

10-51

The Custom MPC Controller block is a MATLAB Function block. To examine the MATLAB code,
double-click the block. Since Linv, F, Ac, b0 matrices, and opt structure are constant, they are
passed into the MATLAB Function block as parameters.

Run a simulation in Simulink. The closed-responses of LQR and MPC controllers are identical to their
counterparts in the MATLAB simulation.

open_system([mdl '/u_lqr'])
open_system([mdl '/y_lqr'])
open_system([mdl '/u_mpc'])
open_system([mdl '/y_mpc'])
sim(mdl)

10 Code Generation

10-52

 Solve Custom MPC Quadratic Programming Problem and Generate Code

10-53

Code Generation in MATLAB

mpcActiveSetSolver supports C code generation with MATLAB Coder. Assume you have a
function, mycode, that is compatible with the code generation standard.

10 Code Generation

10-54

function [x,iter,iA1,lam] = mycode()
%#codegen
n = 5;
m = 10;
q = 2;
H = diag(10*rand(n,1));
f = randn(n,1);
A = randn(m,n);
b = randn(m,1);
Aeq = randn(q,n);
beq = randn(q,1);
Linv = chol(H,'lower')\eye(n);
iA = false(m,1);
Opt = mpcActiveSetOptions();
[x,iter,iA1,lam] = mpcActiveSetSolver(Linv,f,A,b,Aeq,beq,iA,Opt);

You can use following command to generate C code with MATLAB Coder:

fun = 'mycode';
Cfg = coder.config('mex'); % or 'lib', 'dll', etc.
codegen('-config',Cfg,fun,'-o',fun);

Acknowledgment

This example is inspired by Professor Mark Cannon's lecture notes for the Model Predictive Control
class at University of Oxford. The plant model is the same one used in Example 2.1 in the "Prediction
and optimization" section.

bdclose(mdl)

See Also
mpcqpsolver | mpcqpsolverOptions

More About
• “QP Solvers” on page 2-17

 Solve Custom MPC Quadratic Programming Problem and Generate Code

10-55

Simulate and Generate Code for MPC Controller with Custom
QP Solver

This example shows how to simulate and generate code for a model predictive controller that uses a
custom quadratic programming (QP) solver. The plant for this example is a dc-servo motor in
Simulink®.

DC-Servo Motor Model

The dc-servo motor model is a linear dynamic system described in [1]. plant is the continuous-time
state-space model of the motor. tau is the maximum admissible torque, which you use as an output
constraint.

[plant,tau] = mpcmotormodel;

Design MPC Controller

The plant has one input, the motor input voltage. The MPC controller uses this input as a manipulated
variable (MV). The plant has two outputs, the motor angular position and shaft torque. The angular
position is a measured output (MO), and the shaft torque is unmeasured (UO).

plant = setmpcsignals(plant,'MV',1,'MO',1,'UO',2);

Constrain the manipulated variable to be between +/- 220 volts. Since the plant inputs and outputs
are of different orders of magnitude, to facilitate tuning, use scale factors. Typical choices of scale
factor are the upper/lower limit or the operating range.

MV = struct('Min',-220,'Max',220,'ScaleFactor',440);

There is no constraint on the angular position. Specify upper and lower bounds on shaft torque
during the first three prediction horizon steps. To define these bounds, use tau.

OV = struct('Min',{-Inf, [-tau;-tau;-tau;-Inf]},...
 'Max',{Inf, [tau;tau;tau;Inf]},'ScaleFactor',{2*pi, 2*tau});

The control task is to achieve zero tracking error for the angular position. Since you only have one
manipulated variable, allow shaft torque to float within its constraint by setting its tuning weight to
zero.

Weights = struct('MV',0,'MVRate',0.1,'OV',[0.1 0]);

Specify the sample time and horizons, and create the MPC controller, using plant as the predictive
model.

Ts = 0.1; % Sample time
p = 10; % Prediction horizon
m = 2; % Control horizon
mpcobj = mpc(plant,Ts,p,m,Weights,MV,OV);

Simulate in Simulink with Built-In QP Solver

To run the remaining example, Simulink is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink is required to run this example.')
 return
end

10 Code Generation

10-56

Open a Simulink model that simulates closed-loop control of the dc-servo motor using the MPC
controller. By default, MPC uses a built-in QP solver that uses the KWIK algorithm.

mdl = 'mpc_customQPcodegen';
open_system(mdl)

Run the simulation

sim(mdl)

-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Store the plant input and output signals in the MATLAB workspace.

uKWIK = u;
yKWIK = y;

Simulate in Simulink with a Custom QP Solver

To examine how the custom solver behaves under the same conditions, enable the custom solver in
the MPC controller.

mpcobj.Optimizer.CustomSolver = true;

 Simulate and Generate Code for MPC Controller with Custom QP Solver

10-57

You must also provide a MATLAB® function that satisfies the following requirements:

• Function name must be mpcCustomSolver.
• Input and output arguments must match the arguments in the template file.
• Function must be on the MATLAB path.

In this example, use the custom QP solver defined in the template file
mpcCustomSolverCodeGen_TemplateEML.txt, which implements the dantzig algorithm and is
suitable for code generation. Save the function in your working folder as mpcCustomSolver.m.

src = which('mpcCustomSolverCodeGen_TemplateEML.txt');
dest = fullfile(pwd,'mpcCustomSolver.m');
copyfile(src,dest,'f')

Simulate closed-loop control of the dc-servo motor, and save the plant input and output.

sim(mdl)
uDantzigSim = u;
yDantzigSim = y;

-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Generate Code with Custom QP Solver

To run the remaining example, Simulink Coder product is required.

if ~mpcchecktoolboxinstalled('simulinkcoder')
 disp('Simulink(R) Coder(TM) is required to run this example.')
 return
end

To generate code from an MPC Controller block that uses a custom QP solver, enable the custom
solver for code generation option in the MPC controller.

mpcobj.Optimizer.CustomSolverCodeGen = true;

You must also provide a MATLAB® function that satisfies all the following requirements:

• Function name must be mpcCustomSolverCodeGen.
• Input and output arguments must match the arguments in the template file.
• Function must be on the MATLAB path.

In this example, use the same custom solver defined in
mpcCustomSolverCodeGen_TemplateEML.txt. Save the function in your working folder as
mpcCustomSolverCodeGen.m.

src = which('mpcCustomSolverCodeGen_TemplateEML.txt');
dest = fullfile(pwd,'mpcCustomSolverCodeGen.m');
copyfile(src,dest,'f')

Review the saved mpcCustomSolverCodeGen.m file.

function [x, status] = mpcCustomSolverCodeGen(H, f, A, b, x0)

10 Code Generation

10-58

%#codegen
% mpcCustomSolverCodeGen allows the user to specify a custom (QP) solver
% written in MATLAB to be used by MPC controller in code generation.
%
% Workflow:
% (1) Copy this template file to your work folder and rename it to
% "mpcCustomSolverCodeGen.m". The work folder must be on the path.
% (2) Modify the "mpcCustomSolverCodeGen.m" to use your solver.
% Note that your solver must use only fixed-size data.
% (3) Set "mpcobj.Optimizer.CustomSolverCodeGen = true" to tell the MPC
% controller to use the solver in code generation.
% To generate code:
% In MATLAB, use "codegen" command with "mpcmoveCodeGeneration" (require MATLAB Coder)
% In Simulink, generate code with MPC and Adaptive MPC blocks
%
% To use this solver for simulation in MATLAB and Simulink, you need to:
% (1) Copy "mpcCustomSolver.txt" template file to your work folder and
% rename it to "mpcCustomSolver.m". The work folder must be on the path.
% (2) Modify the "mpcCustomSolver.m" to use your solver.
% (3) Set "mpcobj.Optimizer.CustomSolver = true" to tell the MPC
% controller to use the solver in simulation.
%
% The MPC QP problem is defined as follows:
%
% min J(x) = 0.5*x'*H*x + f'*x, s.t. A*x >= b.
%
% Inputs (provided by MPC controller at run-time):
% H: a n-by-n Hessian matrix, which is symmetric and positive definite.
% f: a n-by-1 column vector.
% A: a m-by-n matrix of inequality constraint coefficients.
% b: a m-by-1 vector of the right-hand side of inequality constraints.
% x0: a n-by-1 vector of the initial guess of the optimal solution.
%
% Outputs (sent back to MPC controller at run-time):
% x: must be a n-by-1 vector of optimal solution.
% status: must be an integer of:
% positive value: number of iterations used in computation
% 0: maximum number of iterations reached
% -1: QP is infeasible
% -2: Failed to find a solution due to other reasons
% Note that:
% (1) When solver fails to find an optimal solution (status<=0), "x"
% still needs to be returned.
% (2) To use sub-optimal QP solution in MPC, return the sub-optimal "x"
% with "status = 0". In addition, you need to set
% "mpcobj.Optimizer.UseSuboptimalSolution = true" in MPC controller.
%
% DO NOT CHANGE LINES ABOVE

% This template implements a showcase QP solver using "Dantzig" algorithm
% by G. B. Dantzig, A. Orden, and P. Wolfe, "The generalized simplex method
% for minimizing a linear form under linear inequality constraints",
% Pacific J. of Mathematics, 5:183–195, 1955.
%
% User is expected to modify this template and plug in own custom QP solver
% that replaces the "Dantzig" algorithm.

ZERO = zeros('like',H);

 Simulate and Generate Code for MPC Controller with Custom QP Solver

10-59

ONE = ones('like',H);
% xmin is a constant term that adds to the initial basis because "dantzig"
% requires positive optimization variables. A fixed "xmin" does not work
% for all MPC problems.
xmin = -1e3*ones(size(f(:)))*ONE;

maxiter = 200*ONE;
nvar = length(f);
ncon = length(b);
a = -H*xmin(:);
H = H\eye(nvar);
rhsc = A*xmin(:) - b(:);
rhsa = a-f(:);
TAB = -[H H*A';A*H A*H*A'];
basisi = [H*rhsa; rhsc + A*H*rhsa];
ibi = -(1:nvar+ncon)'*ONE;
ili = -ibi*ONE;
%% Call EML function "qpdantzg"
[basis,ib,il,iter] = qpdantzg(TAB,basisi,ibi,ili,maxiter); %#ok<ASGLU>
%% status
if iter > maxiter
 status = ZERO;
elseif iter < ZERO
 status = -ONE;
else
 status = iter;
end
%% optimal variable
x = zeros(nvar,1,'like',H);
for j = 1:nvar
 if il(j) <= ZERO
 x(j) = xmin(j);
 else
 x(j) = basis(il(j))+xmin(j);
 end
end

Generate executable code from the Simulink model using the slbuild command from Simulink
Coder.

slbuild(mdl)

Starting build procedure for: mpc_customQPcodegen
-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.
Successful completion of build procedure for: mpc_customQPcodegen

Build Summary

Top model targets built:

Model Action Rebuild Reason
==
mpc_customQPcodegen Code generated and compiled Code generation information file does not exist.

10 Code Generation

10-60

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 58.326s

On a Windows system, after the build process finishes, the software adds the executable file
mpc_customQPcodegen.exe to your working folder.

Run the executable. After the executable completes successfully (status = 0), the software adds
the data file mpc_customQPcodegen.mat to your working folder. Load the data file into the MATLAB
workspace, and obtain the plant input and output signals generated by the executable.

if ispc
 status = system(mdl);
 load(mdl)
 uDantzigCodeGen = u;
 yDantzigCodeGen = y;
else
 disp('The example only runs the executable on Windows system.');
end

** starting the model **
** created mpc_customQPcodegen.mat **

Compare Simulation Results

Compare the plant input and output signals from all the simulations.

if ispc
 figure
 subplot(2,1,1)
 plot(u.time,uKWIK.signals.values,u.time,uDantzigSim.signals.values,...
 '+',u.time,uDantzigCodeGen.signals.values,'o')
 subplot(2,1,2)
 plot(y.time,yKWIK.signals.values,y.time,yDantzigSim.signals.values,...
 '+',y.time,yDantzigCodeGen.signals.values,'o')
 legend('KWIK','Dantzig Simu','Dantzig CodeGen','Location','northwest')
else
 figure
 subplot(2,1,1)
 plot(u.time,uKWIK.signals.values,u.time,uDantzigSim.signals.values,'+')
 subplot(2,1,2)
 plot(y.time,yKWIK.signals.values,y.time,yDantzigSim.signals.values,'+')
 legend('KWIK','Dantzig Simu','Location','northwest')
end

 Simulate and Generate Code for MPC Controller with Custom QP Solver

10-61

The signals from all the simulations are identical.

References

[1] Bemporad, A. and Mosca, E. "Fulfilling hard constraints in uncertain linear systems by reference
managing." Automatica, Vol. 34, Number 4, pp. 451-461, 1998.

bdclose(mdl)

See Also
Functions
mpc

Blocks
MPC Controller

More About
• “QP Solvers” on page 2-17

10 Code Generation

10-62

Real-Time Control with OPC Toolbox
This example shows how to implement an online model predictive controller application using the
OPC client supplied with the OPC Toolbox™.

The example uses the Matrikon™ Simulation OPC server to simulate the behavior of an industrial
process on Windows® operating system.

Download the Matrikon™ OPC Simulation Server from "www.matrikon.com"

Download and install the server and set it running either as a service or as an application.

This example needs OPC Toolbox.

if ~mpcchecktoolboxinstalled('opc')
 disp('The example needs OPC Toolbox.')
end

Establish a Connection to the OPC Server

Use OPC Toolbox commands to connect to the Matrikon OPC Simulation Server.

if mpcchecktoolboxinstalled('opc')
 % Clear any existing opc connections.
 opcreset
 % Flush the callback persistent variables.
 clear mpcopcPlantStep;
 clear mpcopcMPCStep;
 try
 h = opcda('localhost','Matrikon.OPC.Simulation.1');
 connect(h);
 catch ME
 disp('The Matrikon(TM) OPC Simulation Server must be running on the local machine.')
 return
 end
end

Configure Plant OPC I/O

In practice, the plant would be a physical process, and the OPC tags which define its I/O would
already have been created on the OPC server. However, in this case, since a simulation OPC server is
used, the plant behavior must be simulated. To do so, you define tags for the plant manipulated and
measured variables and create a callback function (mpcopcPlantStep) to simulate plant response to
changes in the manipulated variables. Two OPC groups are required, one to represent the two
manipulated variables to be read by the plant simulator and another to write back the two measured
plant outputs storing the results of the plant simulation.

if mpcchecktoolboxinstalled('opc')
 % Build an opc group for 2 plant inputs and initialize them to zero.
 plant_read = addgroup(h,'plant_read');
 imv1 = additem(plant_read,'Bucket Brigade.Real8', 'double');
 writeasync(imv1,0);
 imv2 = additem(plant_read,'Bucket Brigade.Real4', 'double');
 writeasync(imv2,0);
 % Build an opc group for plant outputs.
 plant_write = addgroup(h,'plant_write');
 opv1 = additem(plant_write,'Bucket Brigade.Time', 'double');

 Real-Time Control with OPC Toolbox

10-63

 opv2 = additem(plant_write,'Bucket Brigade.Money', 'double');
 plant_write.WriteAsyncFcn = []; % Suppress command line display.
end

Specify MPC Controller to Control Simulated Plant

Create plant model.

plant_model = ss([-.2 -.1; 0 -.05],eye(2,2),eye(2,2),zeros(2,2));
disc_plant_model = c2d(plant_model,1);

We assume no model mismatch, a control horizon 6 steps, and prediction horizon of 20 steps.

mpcobj = mpc(disc_plant_model,1,20,6);
mpcobj.weights.ManipulatedVariablesRate = [1 1];

Build an internal MPC object structure so that the MPC object is not rebuilt during each callback
execution.

state = mpcstate(mpcobj);
y1 = mpcmove(mpcobj,state,[1;1]',[1 1]');

Build OPC I/O for MPC Controller

Build two OPC groups, one to read the two measured plant outputs and the other to write back the
two manipulated variables.

if mpcchecktoolboxinstalled('opc')
 % Build an opc group for MPC inputs.
 mpc_read = addgroup(h,'mpc_read');
 impcpv1 = additem(mpc_read,'Bucket Brigade.Time', 'double');
 writeasync(impcpv1,0);
 impcpv2 = additem(mpc_read,'Bucket Brigade.Money', 'double');
 writeasync(impcpv2,0);
 impcref1 = additem(mpc_read,'Bucket Brigade.Int2', 'double');
 writeasync(impcref1,1);
 impcref2 = additem(mpc_read,'Bucket Brigade.Int4', 'double');
 writeasync(impcref2,1);
 % Build an opc group for mpc outputs.
 mpc_write = addgroup(h,'mpc_write');
 additem(mpc_write,'Bucket Brigade.Real8', 'double');
 additem(mpc_write,'Bucket Brigade.Real4', 'double');
 % Suppress command line display.
 mpc_write.WriteAsyncFcn = [];
end

Build OPC Groups to Trigger Simulator and Controller

Build two OPC groups based on the same external OPC timer to trigger execution of both plant
simulation and MPC execution when the contents of the OPC time tag change.

if mpcchecktoolboxinstalled('opc')
 gtime = addgroup(h,'time');
 time_tag = additem(gtime,'Triangle Waves.Real8');
 gtime.UpdateRate = 1;
 gtime.DataChangeFcn = {@mpcopcPlantStep plant_read plant_write disc_plant_model};
 gmpctime = addgroup(h,'mpctime');
 additem(gmpctime,'Triangle Waves.Real8');

10 Code Generation

10-64

 gmpctime.UpdateRate = 1;
 gmpctime.DataChangeFcn = {@mpcopcMPCStep mpc_read mpc_write mpcobj};
end

Log Data from Plant Measured Outputs

Log the plant measured outputs from tags 'Bucket Brigade.Time' and 'Bucket
Brigade.Money'.

if mpcchecktoolboxinstalled('opc')
 mpc_read.RecordsToAcquire = 40;
 start(mpc_read);
 while mpc_read.RecordsAcquired < mpc_read.RecordsToAcquire
 pause(3)
 fprintf('Logging data: Record %d / %d',mpc_read.RecordsAcquired,mpc_read.RecordsToAcquire)
 end
 stop(mpc_read);
end

Extract and Plot Logged Data

if mpcchecktoolboxinstalled('opc')
 [itemID, value, quality, timeStamp, eventTime] = getdata(mpc_read,'double');
 plot((timeStamp(:,1)-timeStamp(1,1))*24*60*60,value)
 title('Measured Outputs Logged from Tags Bucket Brigade.Time,Bucket Brigade.Money')
 xlabel('Time (secs)');
end

 Real-Time Control with OPC Toolbox

10-65

See Also

10 Code Generation

10-66

Implement MPC Controllers using Embotech FORCESPRO
Solvers

You can use FORCESPRO, a real-time embedded optimization software tool developed by Embotech
AG, to simulate and generate code for linear and nonlinear MPC controllers designed using Model
Predictive Control Toolbox software. Embotech provides a plugin that leverages the design
capabilities of Model Predictive Control Toolbox software and the computational performance of
FORCESPRO. Using the plugin, you can generate custom solvers that allow deployment on real-time
hardware and that are highly optimized, based on your specific MPC problem, to achieve satisfactory
real-time performance.

For more information on using the FORCESPRO MPC plugin, see the FORCESPRO Documentation.
You can also use FORCESPRO solvers for other optimization applications in both MATLAB and
Simulink. For more information, see the FORCESPRO Third Party Products and Services.

For information on generating code in MATLAB and Simulink for Model Predictive Control Toolbox
controllers, see “Generate Code and Deploy Controller to Real-Time Targets” on page 10-2.

Embotech Quadratic Programming (QP) Solver
To design and simulate a linear time-invariant MPC controller (one in which the prediction model
does not change at run time) in MATLAB using the Embotech FORCESPRO QP solver, follow these
steps.

1 Design a linear controller using an mpc object.
2 Create a custom solver generation option object for the solver using mpcToForcesOptions with

a string input argument that is either "sparse" (to build a sparse QP problem), or "dense" (to
build a dense QP problem). Use "sparse" if your MPC problem has a long prediction horizon
and a large number of constraints.

3 Generate the custom solver and the related variables containing structures for the core, state,
and online data using mpcToForces.

4 If needed, adjust the controller state in the variables containing the state data structure, and
specify run-time signals in the variable containing the online data structure.

5 Simulate the system by iteratively calling mpcmoveFORCES. For sparse QP problems, a MEX file
is automatically generated and used to speed up the simulation.

You can also generate production code. For example, to generate a MEX file from mpcmoveForces
with a dense QP formulation, where the variables coredata, statedata, and onlinedata were
created by mpcToForces, you can use this code:
% configure code generation to create a MATLAB executable
cfg = coder.config('mex'); % or LIB, EXE, etc.
cfg.ConstantInputs = 'IgnoreValues';

% create an executable named myMex
codegen('-config',cfg,'mpcmoveForces','-o','myMex',...
 '-args',{coder.Constant(coredata), statedata, onlinedata});

% calculate the manipulated variables by calling the myMex executable
[mv, statedata, info] = myMex(coredata, statedata, onlinedata)

To design and simulate a linear time-invariant MPC controller in Simulink using the Embotech
FORCESPRO QP solver solver, follow these steps.

 Implement MPC Controllers using Embotech FORCESPRO Solvers

10-67

https://www.embotech.com/forces-pro/
https://www.embotech.com/
https://www.embotech.com/
https://forces.embotech.com/Documentation/index.html
https://www.mathworks.com/products/connections/product_detail/forces-pro.html
https://forces.embotech.com/Documentation/mw_mpc_plugin/index.html
https://forces.embotech.com/Documentation/mw_mpc_plugin/index.html
https://forces.embotech.com/Documentation/mw_mpc_plugin/index.html

1 Design a linear controller using an mpc object.
2 Create a custom solver generation option object for the solver using mpcToForcesOptions with

a string input argument that is either "sparse" (to build a sparse QP problem), or "dense" (to
build a dense QP problem). Use "sparse" if your MPC problem has a long prediction horizon
and a large number of constraints.

3 Generate the custom solver and the related variables containing structures for the core, states,
and online data using mpcToForces.

4 Add the appropriate block to your model:

• For a sparse QP problem, open the Simulink library browser, find the FORCES MPC (Sparse
QP) block under the FORCESPRO MPC Blocks category, and add it to your model.

• For a dense QP problem, open the Simulink library browser, find the MPC Controller block
under the Model Predictive Control Toolbox category, and add it to your model.

5 Specify structure variables in the block dialog:

• For a sparse QP problem, specify the variables containing the core and states data structures.
• For a dense QP problem, specify the mpc object.

6 Simulate the system.
7 When needed, generate code directly from the model or the block.

For more information on how to use QP solvers with Model Predictive Control Toolbox, see “QP
Solvers” on page 2-17.

For more information on the FORCESPRO QP solver, see the Embotech FORCESPRO QP solver
documentation.

Note Using the QP Embotech FORCESPRO Solver for Adaptive MPC controllers or MPC controllers
with custom constraints is not supported.

Embotech Nonlinear Programming (NLP) Solver
To design and simulate a nonlinear MPC controller in MATLAB using the Embotech FORCESPRO NLP
solver, follow these steps.

1 Design a nonlinear controller using an nlmpc or nlmpcMultistage object.
2 Specify custom solver generation options using nlmpcToForcesOptions (or

nlmpcMultistageToForcesOptions, if you designed a multistage controller in the previous
step). For an nlmpc object, you can choose to use the sequential quadratic programming (SQP)
solver instead of the interior-point (IP) solver. Use the IP solver if your nonlinear MPC problem
has long prediction horizon and a large number of constraints. For nlmpcMultistage objects
only the IP solver is available.

3 Generate the custom solver and the related variables containing structures for the core, states,
and online data using nlmpcToForces, (or nlmpcMultistageToForces).

4 Specify current controller states, last control action, and use the variable containing the online
data structure to specify other run-time signals.

5 Simulate the system by iteratively calling nlmpcmoveForces (or
nlmpcmoveForcesMultistage). A MEX file is automatically generated for the two functions to
speed up the simulation in MATLAB.

10 Code Generation

10-68

https://forces.embotech.com/Documentation/mw_mpc_plugin/index.html
https://forces.embotech.com/Documentation/mw_nlmpc_plugin/index.html
https://forces.embotech.com/Documentation/mw_nlmpc_plugin/index.html

To design and simulate a nonlinear MPC controller in Simulink using the Embotech FORCESPRO NLP
solver, follow these steps.

1 Design a nonlinear controller using an nlmpc or nlmpcMultistage object.
2 Specify custom solver generation options using nlmpcToForcesOptions (or

nlmpcMultistageToForcesOptions, if you designed a multistage controller in the previous
step). For an nlmpc object, you can choose to use the sequential quadratic programming (SQP)
solver instead of the interior-point (IP) solver. Use the IP solver if your nonlinear MPC problem
has long prediction horizon and a large number of constraints. For nlmpcMultistage objects
only the IP solver is available.

3 Generate the custom solver and the related variables containing structures for the core, states,
and online data using nlmpcToForces, (or nlmpcMultistageToForces).

4 Open the Simulink library browser, find the FORCES Multistage Nonlinear MPC block under the
FORCESPRO MPC Blocks category, and add it to your model.

5 Specify the variable containing the core data structure in the block dialog.
6 Simulate the system.
7 When needed, generate code directly from the model or the block.

You can also generate code for your Simulink model as described in the section “Code Generation in
Simulink” on page 10-2.

Note Using the NLP Embotech FORCESPRO Solver is only supported when the state and output
functions are compatible with MATLAB code generation and with CasADi. Additionally, for generic
(that is non multistage) nonlinear MPC problems:

• You must not use the custom cost and constraint functions.
• If the nonlinear MPC controller uses multiple optional parameters, you must group them in a

single column vector and set the Model.NumberOfParameters property of the controller to 1.

For an example on using the FORCES Nonlinear MPC block see “Swing-up Control of a Pendulum
Using Nonlinear Model Predictive Control” on page 9-49.

See Also

More About
• “QP Solvers” on page 2-17
• “Configure Optimization Solver for Nonlinear MPC” on page 9-27

 Implement MPC Controllers using Embotech FORCESPRO Solvers

10-69

https://web.casadi.org/

Automated Driving Applications

• “Automated Driving Using Model Predictive Control” on page 11-2
• “Adaptive Cruise Control System Using Model Predictive Control” on page 11-5
• “Adaptive Cruise Control with Sensor Fusion” on page 11-10
• “Lane Keeping Assist System Using Model Predictive Control” on page 11-28
• “Lane Keeping Assist with Lane Detection” on page 11-33
• “Lane Following Control with Sensor Fusion and Lane Detection” on page 11-51
• “Highway Lane Following” on page 11-62
• “Highway Lane Change” on page 11-78
• “Automate Testing for Highway Lane Following” on page 11-89
• “Highway Lane Following with Intelligent Vehicles” on page 11-99
• “Parking Valet Using Nonlinear Model Predictive Control” on page 11-117
• “Parallel Parking Using Nonlinear Model Predictive Control” on page 11-126
• “Parallel Parking Using RRT Planner and MPC Tracking Controller” on page 11-139
• “Traffic Light Negotiation” on page 11-148
• “Traffic Light Negotiation with Unreal Engine Visualization” on page 11-162

11

Automated Driving Using Model Predictive Control
Model predictive control (MPC) is a discrete-time multi-variable control architecture. At each control
interval, an MPC controller uses an internal model to predict future plant behavior. Based on this
prediction, the controller computes optimal control actions. For more information on model predictive
control, see “MPC Design”.

You can use MPC in automated driving applications to improve vehicle responsiveness while
maintaining passenger comfort and safety. Applications can include:

• Adaptive cruise control — For an example, see “Adaptive Cruise Control System Using Model
Predictive Control” on page 11-5.

• Lane-keeping assist — For an example, see “Lane Keeping Assist System Using Model Predictive
Control” on page 11-28.

• Lane-following control — For an example, see “Lane Following Control with Sensor Fusion and
Lane Detection” on page 11-51.

• Parking — For an example, see “Parallel Parking Using Nonlinear Model Predictive Control” on
page 11-126.

• Obstacle avoidance — For an example, see “Obstacle Avoidance Using Adaptive Model Predictive
Control” on page 7-38.

MPC has several features that are useful for automated driving.

MPC Feature Description More Information
Explicitly handle input
and output constraints

When computing optimal control moves, an
MPC controller accounts for any input and
output constraints on the system. For example,
you can specify constraints for:

• Speed limits
• Safe following distance
• Physical vehicle limits, such as maximum

steering angle
• Obstacles for the controller to avoid

• “Specify Constraints” on
page 1-5

• “Constraints on Linear
Combinations of Inputs
and Outputs” on page 3-5

Predict ego vehicle
behavior across a
receding horizon

An MPC controller uses an internal model of
the vehicle dynamics to predict how the
vehicle will react to a given control action
across a prediction horizon. This behavior is
analogous to a human driver understanding
and predicting the behavior of their vehicle.

• “Choose Sample Time and
Horizons” on page 1-2

• “MPC Prediction Models”

Preview reference
trajectories and
disturbances across
prediction horizon

If you can anticipate reference trajectories or
disturbances across the prediction horizon, an
MPC controller can incorporate this
information when computing optimal control
actions. This behavior is analogous to a human
driver previewing the road ahead of their
vehicle.

“Signal Previewing” on page
5-19

11 Automated Driving Applications

11-2

MPC Feature Description More Information
Update internal vehicle
model at run time

If the dynamics of the ego vehicle vary over
time, such as for velocity-dependent steering
dynamics, you can update the controller
internal model using adaptive MPC.

“Adaptive MPC” on page 7-2

Generate code You can automatically generate code for
deploying model predictive controllers.

“Generate Code and Deploy
Controller to Real-Time
Targets” on page 10-2

Simulation in Simulink
To simplify the initial development of automated driving controllers, Model Predictive Control Toolbox
software provides Simulink blocks for adaptive cruise control, lane-keeping assistance, and path
following. These blocks provide application-specific interfaces and options for designing an MPC
controller.

Block Description
Adaptive Cruise Control System Track a set velocity and maintain a safe distance from a

lead vehicle by adjusting the longitudinal acceleration of
an ego vehicle.

Lane Keeping Assist System Keep an ego vehicle traveling along the center of a
straight or curved road by adjusting the front steering
angle.

Path Following Control System Keep an ego vehicle traveling along the center of a
straight or curved road while tracking a set velocity and
maintaining a safe distance from a lead vehicle. To do so,
the controller adjusts both the longitudinal acceleration
and front steering angle of the ego vehicle.

For other automated driving applications, such as obstacle avoidance, you can design and simulate
controllers using the other model predictive control Simulink blocks, such as the MPC Controller,
Adaptive MPC Controller, and Nonlinear MPC Controller blocks. For an example that uses an
adaptive model predictive controller, see “Obstacle Avoidance Using Adaptive Model Predictive
Control” on page 7-38.

Controller Customization
For the Adaptive Cruise Control System, Lane Keeping Assist System, and Path Following Control
System blocks, you can generate a custom subsystem, which you can then modify for your
application. This option is useful when you want to:

• Modify default MPC settings or use advanced MPC features
• Modify the default controller initial conditions
• Use different application settings, such as a custom safe following distance definition for adaptive

cruise control

To create a custom subsystem, click the corresponding button for the block you are using. For
example, to create a custom subsystem for an Adaptive Cruise Control System block, on the Block
tab, click Create ACC subsystem. The software creates a Simulink model that contains a subsystem

 Automated Driving Using Model Predictive Control

11-3

with the same configuration as your original controller. You can modify this subsystem and directly
substitute it back into your original model, replacing the controller block.

Integration with Automated Driving Toolbox
If you have Automated Driving Toolbox™ software, you can integrate your model predictive controller
with systems for:

• Object detection and tracking
• Lane boundary detection
• Path planning
• Sensor fusion

For examples, see: “Adaptive Cruise Control with Sensor Fusion” on page 11-10, “Lane Keeping
Assist with Lane Detection” on page 11-33, and “Lane Following Control with Sensor Fusion and
Lane Detection” on page 11-51.

See Also
Blocks
Adaptive Cruise Control System | Lane Keeping Assist System | MPC Controller | Adaptive MPC
Controller | Path Following Control System | Nonlinear MPC Controller

11 Automated Driving Applications

11-4

Adaptive Cruise Control System Using Model Predictive Control
This example shows how to use the Adaptive Cruise Control System block in Simulink® and
demonstrates the control objectives and constraints of this block.

Add example file folder to MATLAB® path.

addpath(fullfile(matlabroot,'examples','mpc','main'));

Adaptive Cruise Control System

A vehicle (ego car) equipped with adaptive cruise control (ACC) has a sensor, such as radar, that
measures the distance to the preceding vehicle in the same lane (lead car), . The sensor also
measures the relative velocity of the lead car, . The ACC system operates in the following two
modes:

• Speed control: The ego car travels at a driver-set speed.
• Spacing control: The ego car maintains a safe distance from the lead car.

The ACC system decides which mode to use based on real-time radar measurements. For example, if
the lead car is too close, the ACC system switches from speed control to spacing control. Similarly, if
the lead car is further away, the ACC system switches from spacing control to speed control. In other
words, the ACC system makes the ego car travel at a driver-set speed as long as it maintains a safe
distance.

The following rules are used to determine the ACC system operating mode:

• If , then speed control mode is active. The control goal is to track the driver-set
velocity, .

• If , then spacing control mode is active. The control goal is to maintain the safe
distance, .

 Adaptive Cruise Control System Using Model Predictive Control

11-5

Simulink Model for Lead Car and Ego Car

The dynamics for lead car and ego car are modeled in Simulink. Open the Simulink model.

mdl = 'mpcACCsystem';
open_system(mdl)

To approximate a realistic driving environment, the acceleration of the lead car varies according to a
sine wave during the simulation. The Adaptive Cruise Control System block outputs an acceleration
control signal for the ego car.

Define the sample time, Ts, and simulation duration, T, in seconds.

Ts = 0.1;
T = 80;

For both the ego vehicle and the lead vehicle, the dynamics between acceleration and velocity are
modeled as:

which approximates the dynamics of the throttle body and vehicle inertia.

Specify the linear model for ego car.

G_ego = tf(1,[0.5,1,0]);

Specify the initial position and velocity for the two vehicles.

x0_lead = 50; % initial position for lead car (m)
v0_lead = 25; % initial velocity for lead car (m/s)

x0_ego = 10; % initial position for ego car (m)
v0_ego = 20; % initial velocity for ego car (m/s)

11 Automated Driving Applications

11-6

Configuration of Adaptive Cruise Control System Block

The ACC system is modeled using the Adaptive Cruise Control System Block in Simulink. The inputs
to the ACC system block are:

• Driver-set velocity
• Time gap
• Velocity of the ego car
• Relative distance to the lead car (from radar)
• Relative velocity to the lead car (from radar)

The output for the ACC system is the acceleration of the ego car.

The safe distance between the lead car and the ego car is a function of the ego car velocity, :

where is the standstill default spacing and is the time gap between the vehicles. Specify
values for , in meters, and , in seconds.

t_gap = 1.4;
D_default = 10;

Specify the driver-set velocity in m/s.

v_set = 30;

Considering the physical limitations of the vehicle dynamics, the acceleration is constrained to the
range [-3,2] (m/s^2).

amin_ego = -3;
amax_ego = 2;

For this example, the default parameters of the Adaptive Cruise Control System block match the
simulation parameters. If your simulation parameters differ from the default values, then update the
block parameters accordingly.

Simulation Analysis

Run the simulation.

sim(mdl)

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Plot the simulation result.

mpcACCplot(logsout,D_default,t_gap,v_set)

 Adaptive Cruise Control System Using Model Predictive Control

11-7

In the first 3 seconds, to reach the driver-set velocity, the ego car accelerates at full throttle.

From 3 to 13 seconds, the lead car accelerates slowly. As a result, to maintain a safe distance to the
lead car, the ego car accelerates with a slower rate.

From 13 to 25 seconds, the ego car maintains the driver-set velocity, as shown in the Velocity plot.
However, as the lead car reduces speed, the spacing error starts approaching 0 after 20 seconds.

From 25 to 45 seconds, the lead car slows down and then accelerates again. The ego car maintains a
safe distance from the lead car by adjusting its speed, as shown in the Distance plots.

From 45 to 56 seconds, the spacing error is above 0. Therefore, the ego car achieves the driver-set
velocity again.

From 56 to 76 seconds, the deceleration/acceleration sequence from the 25 to 45 second interval is
repeated.

11 Automated Driving Applications

11-8

Throughout the simulation, the controller ensures that the actual distance between the two vehicles
is greater than the set safe distance. When the actual distance is sufficiently large, then the controller
ensures that the ego vehicle follows the driver-set velocity.

Remove example file folder from MATLAB path, and close Simulink model.

rmpath(fullfile(matlabroot,'examples','mpc','main'));
bdclose(mdl)

See Also
Blocks
Adaptive Cruise Control System

More About
• “Automated Driving Using Model Predictive Control” on page 11-2

 Adaptive Cruise Control System Using Model Predictive Control

11-9

Adaptive Cruise Control with Sensor Fusion
This example shows how to implement a sensor fusion-based automotive adaptive cruise controller
for a vehicle traveling on a curved road using sensor fusion.

In this example, you:

1 Review a control system that combines sensor fusion and an adaptive cruise controller (ACC).
Two variants of ACC are provided: a classical controller and an Adaptive Cruise Control System
block from Model Predictive Control Toolbox.

2 Test the control system in a closed-loop Simulink model using synthetic data generated by the
Automated Driving Toolbox.

3 Configure the code generation settings for software-in-the-loop simulation, and automatically
generate code for the control algorithm.

Introduction

An adaptive cruise control system is a control system that modifies the speed of the ego vehicle in
response to conditions on the road. As in regular cruise control, the driver sets a desired speed for
the car; in addition, the adaptive cruise control system can slow the ego vehicle down if there is
another vehicle moving slower in the lane in front of it.

For the ACC to work correctly, the ego vehicle must determine how the lane in front of it curves, and
which car is the 'lead car', that is, in front of the ego vehicle in the lane. A typical scenario from the
viewpoint of the ego vehicle is shown in the following figure. The ego vehicle (blue) travels along a
curved road. At the beginning, the lead car is the pink car. Then the purple car cuts into the lane of
the ego vehicle and becomes the lead car. After a while, the purple car changes to another lane, and
the pink car becomes the lead car again. The pink car remains the lead car afterward. The ACC
design must react to the change in the lead car on the road.

Current ACC designs rely mostly on range and range rate measurements obtained from radar, and
are designed to work best along straight roads. An example of such a system is given in “Adaptive
Cruise Control System Using Model Predictive Control” on page 11-5 and in “Automotive Adaptive

11 Automated Driving Applications

11-10

Cruise Control Using FMCW Technology” (Radar Toolbox). Moving from advanced driver-assistance
system (ADAS) designs to more autonomous systems, the ACC must address the following challenges:

1 Estimating the relative positions and velocities of the cars that are near the ego vehicle and that
have significant lateral motion relative to the ego vehicle.

2 Estimating the lane ahead of the ego vehicle to find which car in front of the ego vehicle is the
closest one in the same lane.

3 Reacting to aggressive maneuvers by other vehicles in the environment, in particular, when
another vehicle cuts into the ego vehicle lane.

This example demonstrates two main additions to existing ACC designs that meet these challenges:
adding a sensor fusion system and updating the controller design based on model predictive control
(MPC). A sensor fusion and tracking system that uses both vision and radar sensors provides the
following benefits:

1 It combines the better lateral measurement of position and velocity obtained from vision sensors
with the range and range rate measurement from radar sensors.

2 A vision sensor can detect lanes, provide an estimate of the lateral position of the lane relative to
the ego vehicle, and position the other cars in the scene relative to the ego vehicle lane. This
example assumes ideal lane detection.

An advanced MPC controller adds the ability to react to more aggressive maneuvers by other vehicles
in the environment. In contrast to a classical controller that uses a PID design with constant gains,
the MPC controller regulates the velocity of the ego vehicle while maintaining a strict safe distance
constraint. Therefore, the controller can apply more aggressive maneuvers when the environment
changes quickly in a similar way to what a human driver would do.

Overview of Test Bench Model and Simulation Results

To open the main Simulink model, use the following command:

open_system('ACCTestBenchExample')

 Adaptive Cruise Control with Sensor Fusion

11-11

The model contains two main subsystems:

1 ACC with Sensor Fusion, which models the sensor fusion and controls the longitudinal
acceleration of the vehicle. This component allows you to select either a classical or model
predictive control version of the design.

2 A Vehicle and Environment subsystem, which models the motion of the ego vehicle and models
the environment. A simulation of radar and vision sensors provides synthetic data to the control
subsystem.

To run the associated initialization script before running the model, in the Simulink model, click Run
Setup Script or, at the command prompt, type the following:

helperACCSetUp

The script loads certain constants needed by the Simulink model, such as the scenario object, vehicle
parameters, and ACC design parameters. The default ACC is the classical controller. The script also
creates buses that are required for defining the inputs into and outputs for the control system
referenced model. These buses must be defined in the workspace before model compilation. When
the model compiles, additional Simulink buses are automatically generated by their respective blocks.

11 Automated Driving Applications

11-12

To plot the results of the simulation and depict the surroundings of the ego vehicle, including the
tracked objects, use the Bird's-Eye Scope (Automated Driving Toolbox). The Bird's-Eye Scope is a
model-level visualization tool that you can open from the Simulink toolstrip. On the Simulation tab,
under Review Results, click Bird's-Eye Scope. After opening the scope, click Find Signals to set
up the signals. The following commands run the simulation to 15 seconds to get a mid-simulation
picture and run again all the way to end of the simulation to gather results.

sim('ACCTestBenchExample','StopTime','15') %Simulate 15 seconds
sim('ACCTestBenchExample') %Simulate to end of scenario

ans =

 Simulink.SimulationOutput:
 logsout: [1x1 Simulink.SimulationData.Dataset]
 tout: [151x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

 Adaptive Cruise Control with Sensor Fusion

11-13

The Bird's-Eye Scope shows the results of the sensor fusion. It shows how the radar and vision
sensors detect the vehicles within their sensors coverage areas. It also shows the tracks maintained
by the Multi Object Tracker block. The yellow track shows the most important object (MIO): the
closest track in front of the ego vehicle in its lane. We see that at the beginning of the scenario, the
most important object is the fast-moving car ahead of the ego vehicle. When the passing car gets
closer to the slow-moving car, it crosses to the left lane, and the sensor fusion system recognizes it to
be the MIO. This car is much closer to the ego vehicle and much slower than it. Thus, the ACC must
slow the ego vehicle.

In the following results for the classical ACC system, the:

• Top plot shows the ego vehicle velocity.
• Middle plot shows the relative distance between the ego vehicle and lead car.
• Bottom plot shows the ego vehicle acceleration.

In this example, the raw data from the Tracking and Sensor Fusion system is used for ACC design
without post-processing. You can expect to see some 'spikes' (middle plot) due to the uncertainties in
the sensor model especially when another car cuts into or leaves the ego vehicle lane.

To view the simulation results, use the following command.

helperPlotACCResults(logsout,default_spacing,time_gap)

11 Automated Driving Applications

11-14

• In the first 11 seconds, the lead car is far ahead of the ego vehicle (middle plot). The ego vehicle
accelerates and reaches the velocity set by the driver (top plot).

• Another car becomes the lead car from 11 to 20 seconds when the car cuts into the ego vehicle
lane (middle plot). When the distance between the lead car and the ego vehicle is large (11-15
seconds), the ego vehicle still travels at the driver-set velocity. When the distance becomes small
(15-20 seconds), the ego vehicle decelerates to maintain a safe distance from the lead car (top
plot).

• From 20 to 34 seconds, the car in front moves to another lane, and a new lead car appears (middle
plot). Because the distance between the lead car and the ego vehicle is large, the ego vehicle
accelerates until it reaches the driver-set velocity at 27 seconds. Then, the ego vehicle continues
to travel at the driver-set velocity (top plot).

• The bottom plot demonstrates that the acceleration is within the range [-3,2] m/s^2. The smooth
transient behavior indicates that the driver comfort is satisfactory.

 Adaptive Cruise Control with Sensor Fusion

11-15

In the MPC-based ACC design, the underlying optimization problem is formulated by tracking the
driver-set velocity subject to enforcing a safe distance from the lead car. The MPC controller design is
described in the Adaptive Cruise Controller section. To run the model with the MPC design, first
activate the MPC variant, and then run the following commands. This step requires Model Predictive
Control Toolbox software. You can check the existence of this license using the following code. If no
code exists, a sample of similar results is depicted.

hasMPCLicense = license('checkout','MPC_Toolbox');
if hasMPCLicense
 controller_type = 2;
 sim('ACCTestBenchExample','StopTime','15') %Simulate 15 seconds
 sim('ACCTestBenchExample') %Simulate to end of scenario
else
 load data_mpc
end

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

ans =

 Simulink.SimulationOutput:
 logsout: [1x1 Simulink.SimulationData.Dataset]
 tout: [151x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

11 Automated Driving Applications

11-16

In the simulation results for the MPC-based ACC, similar to the classical ACC design, the objectives of
speed and spacing control are achieved. Compared to the classical ACC design, the MPC-based ACC
is more aggressive as it uses full throttle or braking for acceleration or deceleration. This behavior is
due to the explicit constraint on the relative distance. The aggressive behavior may be preferred
when sudden changes on the road occur, such as when the lead car changes to be a slow car. To make
the controller less aggressive, open the mask of the Adaptive Cruise Control System block, and
reduce the value of the Controller Behavior parameter. As previously noted, the spikes in the
middle plot are due to the uncertainties in the sensor model.

To view the results of the simulation with the MPC-based ACC, use the following command.

helperPlotACCResults(logsout,default_spacing,time_gap)

 Adaptive Cruise Control with Sensor Fusion

11-17

In the following, the functions of each subsystem in the Test Bench Model are described in more
detail. The Adaptive Cruise Controller with Sensor Fusion subsystem contains two main components:

1 Tracking and Sensor Fusion subsystem
2 Adaptive Cruise Controller subsystem

open_system('ACCTestBenchExample/ACC with Sensor Fusion')

11 Automated Driving Applications

11-18

Tracking and Sensor Fusion

The Tracking and Sensor Fusion subsystem processes vision and radar detections coming from the
Vehicle and Environment subsystem and generates a comprehensive situation picture of the
environment around the ego vehicle. Also, it provides the ACC with an estimate of the closest car in
the lane in front of the ego vehicle.

open_system('ACCWithSensorFusionMdlRef/Tracking and Sensor Fusion')

The main block of the Tracking and Sensor Fusion subsystem is the Multi-Object Tracker (Automated
Driving Toolbox) block, whose inputs are the combined list of all the sensor detections and the
prediction time. The output from the Multi Object Tracker block is a list of confirmed tracks.

 Adaptive Cruise Control with Sensor Fusion

11-19

The Detection Concatenation (Automated Driving Toolbox) block concatenates the vision and radar
detections. The prediction time is driven by a clock in the Vehicle and Environment subsystem.

The Detection Clustering block clusters multiple radar detections, since the tracker expects at most
one detection per object per sensor.

The findLeadCar MATLAB function block finds which car is closest to the ego vehicle and ahead of
it in same the lane using the list of confirmed tracks and the curvature of the road. This car is
referred to as the lead car, and may change when cars move into and out of the lane in front of the
ego vehicle. The function provides the position and velocity of the lead car relative to the ego vehicle
and an index to the most important object (MIO) track.

Adaptive Cruise Controller

The adaptive cruise controller has two variants: a classical design (default) and an MPC-based design.
For both designs, the following design principles are applied. An ACC equipped vehicle (ego vehicle)
uses sensor fusion to estimate the relative distance and relative velocity to the lead car. The ACC
makes the ego vehicle travel at a driver-set velocity while maintaining a safe distance from the lead
car. The safe distance between lead car and ego vehicle is defined as

where the default spacing , and time gap are design parameters and is the
longitudinal velocity of the ego vehicle. The ACC generates the longitudinal acceleration for the ego
vehicle based on the following inputs:

• Longitudinal velocity of ego vehicle
• Relative distance between lead car and ego vehicle (from the Tracking and Sensor Fusion system)
• Relative velocity between lead car and ego vehicle (from the Tracking and Sensor Fusion system)

Considering the physical limitations of the ego vehicle, the longitudinal acceleration is constrained to
the range [-3,2] .

In the classical ACC design, if the relative distance is less than the safe distance, then the primary
goal is to slow down and maintain a safe distance. If the relative distance is greater than the safe
distance, then the primary goal is to reach driver-set velocity while maintaining a safe distance.
These design principles are achieved through the Min and Switch blocks.

open_system('ACCWithSensorFusionMdlRef/Adaptive Cruise Controller/ACC Classical')

11 Automated Driving Applications

11-20

In the MPC-based ACC design, the underlying optimization problem is formulated by tracking the
driver-set velocity subject to a constraint. The constraint enforces that relative distance is always
greater than the safe distance.

To configure the Adaptive Cruise Control System block, use the parameters defined in the
helperACCSetUp file. For example, the linear model for ACC design , and is obtained from
vehicle dynamics. The two Switch blocks implement simple logic to handle large numbers from the
sensor (for example, the sensor may return Inf when it does not detect an MIO).

open_system('ACCWithSensorFusionMdlRef/Adaptive Cruise Controller/ACC Model Predictive Control')

 Adaptive Cruise Control with Sensor Fusion

11-21

For more information on MPC design for ACC, see “Adaptive Cruise Control System Using Model
Predictive Control” on page 11-5.

Vehicle and Environment

The Vehicle and Environment subsystem is composed of two parts:

1 Vehicle Dynamics and Global Coordinates
2 Actor and Sensor Simulation

open_system('ACCTestBenchExample/Vehicle and Environment')

11 Automated Driving Applications

11-22

The Vehicle Dynamics subsystem models the vehicle dynamics with the Bicycle Model - Force Input
block from the Automated Driving Toolbox. The vehicle dynamics, with input (longitudinal
acceleration) and front steering angle , are approximated by:

In the state vector, denotes the lateral velocity, denotes the longitudinal velocity and denotes
the yaw angle. The vehicle parameters are provided in the helperACCSetUp file.

The outputs from the vehicle dynamics (such as longitudinal velocity and lateral velocity) are
based on body fixed coordinates. To obtain the trajectory traversed by the vehicle, the body fixed
coordinates are converted into global coordinates through the following relations:

The yaw angle and yaw angle rate are also converted into the units of degrees.

The goal for the driver steering model is to keep the vehicle in its lane and follow the curved road by
controlling the front steering angle . This goal is achieved by driving the yaw angle error and
lateral displacement error to zero (see the following figure), where

 Adaptive Cruise Control with Sensor Fusion

11-23

The desired yaw angle rate is given by (denotes the radius for the road curvature).

The Actors and Sensor Simulation subsystem generates the synthetic sensor data required for
tracking and sensor fusion. Before running this example, the Driving Scenario Designer (Automated
Driving Toolbox) app was used to create a scenario with a curved road and multiple actors moving on
the road. The roads and actors from this scenario were then saved to the scenario file
ACCTestBenchScenario.mat. To see how you can define the scenario, see the Scenario Creation
section.

open_system('ACCTestBenchExample/Vehicle and Environment/Actors and Sensor Simulation')

11 Automated Driving Applications

11-24

The motion of the ego vehicle is controlled by the control system and is not read from the scenario
file. Instead, the ego vehicle position, velocity, yaw angle, and yaw rate are received as inputs from
the Vehicle Dynamics block and are packed into a single actor pose structure using the packEgo
MATLAB function block.

The Scenario Reader (Automated Driving Toolbox) block reads the actor pose data from the scenario
file ACCTestBenchScenario.mat. The block converts the actor poses from the world coordinates of
the scenario into ego vehicle coordinates. The actor poses are streamed on a bus generated by the
block. In this example, you use a Vision Detection Generator (Automated Driving Toolbox) block and
Radar Detection Generator (Automated Driving Toolbox) block. Both sensors are long-range and
forward-looking, and provide good coverage of the front of the ego vehicle, as needed for ACC. The
sensors use the actor poses in ego vehicle coordinates to generate lists of vehicle detections in front
of the ego vehicle. Finally, a clock block is used as an example of how the vehicle would have a
centralized time source. The time is used by the Multi Object Tracker block.

Scenario Creation

The Driving Scenario Designer app allows you to define roads and vehicles moving on the roads.
For this example, you define two parallel roads of constant curvature. To define the road, you define
the road centers, the road width, and banking angle (if needed). The road centers were chosen by
sampling points along a circular arc, spanning a turn of 60 degrees of constant radius of curvature.

You define all the vehicles in the scenario. To define the motion of the vehicles, you define their
trajectory by a set of waypoints and speeds. A quick way to define the waypoints is by choosing a
subset of the road centers defined earlier, with an offset to the left or right of the road centers to
control the lane in which the vehicles travel.

This example shows four vehicles: a fast-moving car in the left lane, a slow-moving car in the right
lane, a car approaching on the opposite side of the road, and a car that starts on the right lane, but
then moves to the left lane to pass the slow-moving car.

 Adaptive Cruise Control with Sensor Fusion

11-25

The scenario can be modified using the Driving Scenario Designer app and resaved to the same
scenario file ACCTestBenchScenario.mat. The Scenario Reader block automatically picks up the
changes when simulation is rerun. To build the scenario programmatically, you can use the
helperScenarioAuthoring function.

plotACCScenario

Generating Code for the Control Algorithm

Although the entire model does not support code generation, the ACCWithSensorFusionMdlRef
model is configured to support generating C code using Embedded Coder software. To check if you
have access to Embedded Coder, run:

hasEmbeddedCoderLicense = license('checkout','RTW_Embedded_Coder')

You can generate a C function for the model and explore the code generation report by running:

if hasEmbeddedCoderLicense
 rtwbuild('ACCWithSensorFusionMdlRef')
end

You can verify that the compiled C code behaves as expected using software-in-the-loop (SIL)
simulation. To simulate the ACCWithSensorFusionMdlRef referenced model in SIL mode, use:

if hasEmbeddedCoderLicense
 set_param('ACCTestBenchExample/ACC with Sensor Fusion',...
 'SimulationMode','Software-in-the-loop (SIL)')
end

11 Automated Driving Applications

11-26

When you run the ACCTestBenchExample model, code is generated, compiled, and executed for the
ACCWithSensorFusionMdlRef model. This enables you to test the behavior of the compiled code
through simulation.

Conclusions

This example shows how to implement an integrated adaptive cruise controller (ACC) on a curved
road with sensor fusion, test it in Simulink using synthetic data generated by the Automated Driving
Toolbox, componentize it, and automatically generate code for it.

bdclose all

See Also
Blocks
Adaptive Cruise Control System

More About
• “Automated Driving Using Model Predictive Control” on page 11-2

 Adaptive Cruise Control with Sensor Fusion

11-27

Lane Keeping Assist System Using Model Predictive Control
This example shows how to use the Lane Keeping Assist System block in Simulink® and
demonstrates the control objectives and constraints of this block.

Lane Keeping Assist System

A vehicle (ego car) equipped with a lane-keeping assist (LKA) system has a sensor, such as camera,
that measures the lateral deviation and relative yaw angle between the centerline of a lane and the
ego car. The sensor also measures the current lane curvature and curvature derivative. Depending on
the curve length that the sensor can view, the curvature in front of the ego car can be calculated from
the current curvature and curvature derivative.

The LKA system keeps the ego car travelling along the centerline of the lanes on the road by
adjusting the front steering angle of the ego car. The goal for lane keeping control is to drive both
lateral deviation and relative yaw angle close to zero.

Simulink Model for Ego Car

The dynamics for ego car are modeled in Simulink. Open the Simulink model.

mdl = 'mpcLKAsystem';
open_system(mdl)

11 Automated Driving Applications

11-28

Define the sample time, Ts, and simulation duration, T, in seconds.

Ts = 0.1;
T = 15;

To describe the lateral vehicle dynamics, this example uses a bicycle model with the following
parameters.

• m is the total vehicle mass (kg).
• Iz is the yaw moment of inertia of the vehicle (Kg*m^2).
• lf is the longitudinal distance from the center of gravity to the front tires (m).
• lr is the longitudinal distance from center of gravity to the rear tires (m).
• Cf is the cornering stiffness of the front tires (N/rad).
• Cr is the cornering stiffness of the rear tires (N/rad).

m = 1575;
Iz = 2875;
lf = 1.2;
lr = 1.6;
Cf = 19000;
Cr = 33000;

You can represent the lateral vehicle dynamics using a linear time-invariant (LTI) system with the
following state, input, and output variables. The initial conditions for the state variables are assumed
to be zero.

• State variables: Lateral velocity and yaw angle rate
• Input variable: Front steering angle
• Output variables: Same as state variables

In this example, the longitudinal vehicle dynamics are separated from the lateral vehicle dynamics.
Therefore, the longitudinal velocity is assumed to be constant. In practice, the longitudinal velocity

 Lane Keeping Assist System Using Model Predictive Control

11-29

can vary. The Lane Keeping Assist System block uses adaptive MPC to adjust the model of the lateral
dynamics accordingly.

% Specify the longitudinal velocity in m/s.
Vx = 15;

Specify a state-space model, G(s), of the lateral vehicle dynamics.

A = [-(2*Cf+2*Cr)/m/Vx, -Vx-(2*Cf*lf-2*Cr*lr)/m/Vx;...
 -(2*Cf*lf-2*Cr*lr)/Iz/Vx, -(2*Cf*lf^2+2*Cr*lr^2)/Iz/Vx];
B = [2*Cf/m, 2*Cf*lf/Iz]';
C = eye(2);
G = ss(A,B,C,0);

Sensor Dynamics and Curvature Previewer

In this example, the Sensor Dynamics block outputs the lateral deviation and relative yaw angle. The
dynamics for relative yaw angle are , where denotes the curvature. The dynamics for
lateral deviation are .

The Curvature Previewer block outputs the previewed curvature with a look-ahead time of one
second. Therefore, given a sample time , the prediction horizon 10 steps. The curvature used
in this example is calculated based on trajectories for a double lane change maneuver.

Specify the prediction horizon and obtain the previewed curvature.

PredictionHorizon = 10;

time = 0:0.1:15;
md = getCurvature(Vx,time);

Configuration of the Lane Keeping Assist System Block

The LKA system is modeled in Simulink using the Lane Keeping Assist System block. The inputs to the
LKA system block are:

• Previewed curvature (from lane detections)
• Ego longitudinal velocity
• Lateral deviation (from lane detections)
• Relative yaw angle (from lane detections)

The output of the LKA system is the front steering angle of the ego car. Considering the physical
limitations of the ego car, the steering angle is constrained to the range [-0.5,0.5] rad/s.

u_min = -0.5;
u_max = 0.5;

For this example, the default parameters of the Lane Keeping Assist System block match the
simulation parameters. If your simulation parameters differ from the default values, update the block
parameters accordingly.

Simulation Analysis

Run the model.

sim(mdl)

11 Automated Driving Applications

11-30

 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Plot the simulation results.

mpcLKAplot(logsout)

The lateral deviation and the relative yaw angle both converge to zero. That is, the ego car follows
the road closely based on the previewed curvature.

 Lane Keeping Assist System Using Model Predictive Control

11-31

% Close Simulink model.
bdclose(mdl)

See Also
Blocks
Lane Keeping Assist System

More About
• “Automated Driving Using Model Predictive Control” on page 11-2
• “Lane Keeping Assist with Lane Detection” on page 11-33

11 Automated Driving Applications

11-32

Lane Keeping Assist with Lane Detection
This example shows how to simulate and generate code for an automotive lane keeping assist (LKA)
controller.

In this example, you:

1 Review a control algorithm that combines data processing from lane detections and a lane
keeping controller from the Model Predictive Control Toolbox™.

2 Test the control system in a closed-loop Simulink® model using synthetic data generated by the
Automated Driving Toolbox™.

3 Configure the code generation settings for software-in-the-loop simulation and automatically
generate code for the control algorithm.

Introduction

A lane keeping assist (LKA) system is a control system that aids a driver in maintaining safe travel
within a marked lane of a highway. The LKA system detects when the vehicle deviates from a lane and
automatically adjusts the steering to restore proper travel inside the lane without additional input
from the driver. In this example, the LKA system switches between the driver steering command and
lane keeping controller. This approach is sufficient to introduce a modeling architecture for an LKA
system, however a real system would also provide haptic feedback to the steering wheel and enable
the driver to override the LKA system by applying sufficient counter-torque.

For the LKA to work correctly, the ego vehicle must determine the lane boundaries and how the lane
in front of it curves. Idealized LKA designs rely mostly on the previewed curvature, the lateral
deviation, and relative yaw angle between the centerline of the lane and the ego vehicle. An example
of such a system is given in “Lane Keeping Assist System Using Model Predictive Control” on page
11-28. Moving from advanced drive-assistance system (ADAS) designs to more autonomous systems,
the LKA must be robust to missing, incomplete, or inaccurate measurement readings from real-world
lane detectors.

This example demonstrates a robust approach to the controller design when the data from lane
detections may not be accurate. To do so, it uses data from a synthetic lane detector that simulates
the impairments introduced by a wide-angle monocular vision camera. The controller makes decisions
when the data from the sensor is invalid or outside a range. This provides a safety guard when the
sensor measurement is false due to conditions in the environment, such as a sharp curve on the road.

Open Test Bench Model

To open the Simulink test bench model, use the following command.

open_system('LKATestBenchExample')

 Lane Keeping Assist with Lane Detection

11-33

The model contains two main subsystems:

1 Lane Keeping Assist, which controls the front steering angle of the vehicle
2 Vehicle and Environment subsystem, which models the motion of the ego vehicle and models the

environment

Opening this model also runs the helperLKASetUp script, which initializes data used by the model.
The script loads certain constants needed by the Simulink model, such as the vehicle model
parameters, controller design parameters, road scenario, and driver path. You can plot the road and
the path that the driver model will follow.

plotLKAInputs(scenario,driverPath)

11 Automated Driving Applications

11-34

Simulate Assisting a Distracted Driver

You can explore the behavior of the algorithm by enabling lane-keeping assistance and setting the
safe lateral distance. In the Simulink model, in the User Controls section, switch the toggle to On,
and set the Safe Lateral Distance to 1 meter. Alternatively, enable the lane-keeping assist and set
the safe lateral distance.

set_param('LKATestBenchExample/Enable','Value','1')
set_param('LKATestBenchExample/Safe Lateral Offset','Value','1')

To plot the results of the simulation, use the Bird's-Eye Scope (Automated Driving Toolbox). The
Bird's-Eye Scope is a model-level visualization tool that you can open from the Simulink toolstrip. On
the Simulation tab, under Review Results, click Bird's-Eye Scope. After opening the scope, click
Find Signals to set up the signals. Then run the simulation for 15 seconds, and explore the contents
of the Bird's-Eye Scope.

sim('LKATestBenchExample','StopTime','15') % Simulate 15 seconds

 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

ans =

 Simulink.SimulationOutput:
 logsout: [1x1 Simulink.SimulationData.Dataset]
 tout: [4684x1 double]

 Lane Keeping Assist with Lane Detection

11-35

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

11 Automated Driving Applications

11-36

The Bird's-Eye Scope shows a symbolic representation of the road from the perspective of the ego
vehicle. In this example, the Bird's-Eye Scope renders the coverage area of the synthetic vision
detector as a shaded area. The ideal lane markings are additionally shown, as well as the
synthetically detected left and right lane boundaries (shown here in red).

To run the full simulation and explore the results, use the following commands.

sim('LKATestBenchExample') % Simulate to end of scenario
plotLKAResults(scenario,logsout,driverPath)

 Lane Keeping Assist with Lane Detection

11-37

 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

11 Automated Driving Applications

11-38

The blue curve for the driver path shows that the distracted driver may drive the ego vehicle to
another lane when the road curvature changes. The red curve for the driver with Lane Keeping Assist
shows that the ego vehicle remains in its lane when the road curvature changes.

To plot the controller performance, use the following command.

plotLKAPerformance(logsout)

 Lane Keeping Assist with Lane Detection

11-39

• Top plot shows the lateral deviation relative to ego vehicle. The lateral deviation with LKA is
within [-0.5,0.5] m.

• Middle plot shows the relative yaw angle. The relative yaw angle with LKA is within [-0.15,0.15]
rad.

• Bottom plot shows the steering angle of the ego vehicle. The steering angle with LKA is within
[-0.5,0.5] rad.

To view the controller status, use the following command.

plotLKAStatus(logsout)

11 Automated Driving Applications

11-40

• Top plot shows the left and right lane offset. Around 5.5 s, 19 s, 31 s, and 33 s, the lateral offset is
within the distance set by the lane keeping assist. When this happens, the lane departure is
detected.

• Middle plot shows the LKA status and the detection of lane departure. The departure detected
status is consistent with the top plot. The LKA is turned on when the lane departure is detected,
but the control is returned to the driver later when the driver can steer the ego vehicle correctly.

• Bottom plot shows the steering angle from driver and LKA. When the difference between the
steering angle from driver and LKA is small, the LKA releases control to driver (for example,
between 9 s to 17 s).

Simulate Lane Following

You can modify the value of Safe Lateral Offset for LKA to ignore the driver input, putting the
controller into a pure lane following mode. By increasing this threshold, the lateral offset is always

 Lane Keeping Assist with Lane Detection

11-41

within the distance set by the lane keeping assist. Thus, the status for lane departure is on and the
lane keeping assist takes control all the time.

set_param('LKATestBenchExample/Safe Lateral Offset','Value','2')
sim('LKATestBenchExample') % Simulate to end of scenario

 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

11 Automated Driving Applications

11-42

You can explore the results of the simulation using the following commands.

plotLKAResults(scenario,logsout)

 Lane Keeping Assist with Lane Detection

11-43

The red curve shows that the Lane Keeping Assist on its own can keep the ego vehicle travelling
along the centerline of its lane.

Use the following command to depict the controller performance.

plotLKAPerformance(logsout)

11 Automated Driving Applications

11-44

• Top plot shows the lateral deviation relative to ego vehicle. The lateral deviation with LKA is
within [-0.1,0.1] m.

• Middle plot shows the relative yaw angle. The relative yaw angle with LKA is within [-0.02,0.02]
rad.

• Bottom plot shows the steering angle of the ego vehicle. The steering angle with LKA is within
[-0.04,0.04] rad.

To view the controller status, use the following command.

plotLKAStatus(logsout)

 Lane Keeping Assist with Lane Detection

11-45

• Top plot shows the left and right lane offset. Since the lateral offset is never within the distance
set by the lane keeping assist, the lane departure is not detected.

• Middle plot shows that the LKA status is always one, that is, the Lane Keeping Assist takes control
all the time.

• Bottom plot shows the steering angle from driver and LKA. The steering angle from driver
negotiating with the curved road is too aggressive. The small steering angle from LKA is sufficient
for the curved road in this example.

Explore Lane Keeping Assist Algorithm

The Lane Keeping Assist model contains four main parts: 1) Estimate Lane Center 2) Lane Keeping
Controller 3) Detect Lane Departure, and 4) Apply Assist.

open_system('LKATestBenchExample/Lane Keeping Assist')

11 Automated Driving Applications

11-46

The Detect Lane Departure subsystem outputs a signal that is true when the vehicle is too close to a
detected lane. You detect a departure when the offset between the vehicle and lane boundary from
the Lane Sensor is less than the Lane Assist Offset input.

The Estimate Lane Center subsystem outputs the data from lane sensors to the lane keeping
controller. The detector in this example is configured to report the left and right lane boundaries of
the current lane in the current field-of-view of the camera. Each boundary is modeled as a length of a
curve whose curvature varies linearly with distance (clothoid curve). To feed this data to a controller,
offset both of the detected curves toward the center of the lane by the width of the car and a small
margin (1.8 m total). Weight each of the resulting centered curves by the strength of the detection
and pass the averaged result to the controller. Also, The Estimate Lane Center subsystem provides
finite values for inputs to the Lane Keeping Controller subsystem. The previewed curvature provides
the centerline of lane curvature ahead of the ego vehicle. In this example, the ego vehicle can look
ahead for three seconds, which is the product of the prediction horizon and sample time. This look-
ahead time enables the controller to use previewed information for calculating steering angle for the
ego vehicle, which improves the MPC controller performance.

The goal for the Lane Keeping Controller block is to keep the vehicle in its lane and follow the curved
road by controlling the front steering angle . This goal is achieved by driving the lateral deviation
and the relative yaw angle to be small (see the following figure).

 Lane Keeping Assist with Lane Detection

11-47

The LKA controller calculates a steering angle for the ego vehicle based on the following inputs:

• Previewed curvature (derived from Lane Detections)
• Ego vehicle longitudinal velocity
• Lateral deviation (derived from Lane Detections)
• Relative yaw angle (derived from Lane Detections)

Considering physical limitations of the ego vehicle, the steering angle is constrained to be within
[-0.5,0.5] rad. You can change the prediction horizon or move the Controller Behavior slider to
adjust the performance of the controller.

The Apply Assist subsystem decides if the lane keeping controller or the driver takes control of the
ego vehicle. The subsystem switches between the driver commanded steering and the assisted
steering from the Lane Keeping Controller. The switch to assisted steering is initiated when a lane
departure is detected. Control is returned to the driver when the driver begins steering within the
lane again.

Explore Vehicle and Environment

The Vehicle and Environment subsystem enables closed loop simulation of the lane keeping assist
controller.

open_system('LKATestBenchExample/Vehicle and Environment')

11 Automated Driving Applications

11-48

The Vehicle Dynamics subsystem models the vehicle dynamics with Vehicle Body 3DOF Single Track
block from Vehicle Dynamics Blockset™.

The Scenario Reader (Automated Driving Toolbox) block generates the ideal left and right lane
boundaries based on the position of the vehicle with respect to the scenario read from scenario file
LKATestBenchScenario.mat.

The Vision Detection Generator block takes the ideal lane boundaries from the Scenario Reader
block. The detection generator models the field of view of a monocular camera and determines the
heading angle, curvature, curvature derivative, and valid length of each road boundary, accounting
for any other obstacles.

The Driver subsystem generates the driver steering angle based on the driver path which was
created in helperLKASetUp.

Generate Code for the Control Algorithm

The LKARefMdl model is configured to support generating C code using Embedded Coder®
software. To check if you have access to Embedded Coder, run:

hasEmbeddedCoderLicense = license('checkout','RTW_Embedded_Coder')

You can generate a C function for the model and explore the code generation report by running:

if hasEmbeddedCoderLicense
 slbuild('LKARefMdl')
end

You can verify that the compiled C code behaves as expected using software-in-the-loop (SIL)
simulation. To simulate the LKARefMdl referenced model in SIL mode, use:

if hasEmbeddedCoderLicense
 set_param('LKATestBenchExample/Lane Keeping Assist',...

 Lane Keeping Assist with Lane Detection

11-49

 'SimulationMode','Software-in-the-loop (SIL)')
end

When you run the LKATestBenchExample model, code is generated, compiled, and executed for the
LKARefMdl model. This allows you to test the behavior of the compiled code through simulation.

Conclusions

This example shows how to implement an integrated lane keeping assist (LKA) controller on a curved
road with lane detection. It also shows how to test the controller in Simulink using synthetic data
generated by the Automated Driving Toolbox, componentize it, and automatically generate code for it.

close all
bdclose all

See Also
Blocks
Lane Keeping Assist System

More About
• “Automated Driving Using Model Predictive Control” on page 11-2
• “Lane Keeping Assist System Using Model Predictive Control” on page 11-28

11 Automated Driving Applications

11-50

Lane Following Control with Sensor Fusion and Lane Detection
This example shows how to simulate and generate code for an automotive lane-following controller.

In this example, you:

1 Review a control algorithm that combines sensor fusion, lane detection, and a lane following
controller from the Model Predictive Control Toolbox™ software.

2 Test the control system in a closed-loop Simulink® model using synthetic data generated by
Automated Driving Toolbox™ software.

3 Configure the code generation settings for software-in-the-loop simulation and automatically
generate code for the control algorithm.

Introduction

A lane following system is a control system that keeps the vehicle traveling within a marked lane of a
highway, while maintaining a user-set velocity or safe distance from the preceding vehicle. A lane
following system includes combined longitudinal and lateral control of the ego vehicle:

• Longitudinal control - Maintain a driver-set velocity and keep a safe distance from the preceding
car in the lane by adjusting the acceleration of the ego vehicle.

• Lateral control - Keep the ego vehicle traveling along the centerline of its lane by adjusting the
steering of the ego vehicle

The combined lane following control system achieves the individual goals for longitudinal and lateral
control. Further, the lane following control system can adjust the priority of the two goals when they
cannot be met simultaneously.

For an example of longitudinal control using adaptive cruise control (ACC) with sensor fusion, see
“Adaptive Cruise Control with Sensor Fusion” on page 11-10. For an example of lateral control using
a lane keeping assist (LKA) system with lane detection, see “Lane Keeping Assist with Lane
Detection” on page 11-33. The ACC example assumes ideal lane detection, and the LKA example does
not consider surrounding vehicles.

In this example, both lane detection and surrounding cars are considered. The lane following system
synthesizes data from vision and radar detections, estimates the lane center and lead car distance,
and calculates the longitudinal acceleration and steering angle of the ego vehicle.

Define Scenario

Before opening the model, you can optionally change the scenario that the model simulates. This
scenario selection is controlled by a callback function, helperLFSetUp, which runs when the model
opens.

By default, the model simulates a cut-in scenario on a curved road. To change the default scenario
used, either edit the setup script by clicking the Edit Setup Script button in the model or by calling
helperLFSetup with a new input scenario. For example, the following syntax is equivalent to
specifying the default scenario.

helperLFSetup('LFACC_04_Curve_CutInOut');

You can choose from the following scenarios.

 'ACC_01_ISO_TargetDiscriminationTest'
 'ACC_02_ISO_AutoRetargetTest'

 Lane Following Control with Sensor Fusion and Lane Detection

11-51

 'ACC_03_ISO_CurveTest'
 'ACC_04_StopnGo'
 'LFACC_01_DoubleCurve_DecelTarget'
 'LFACC_02_DoubleCurve_AutoRetarget'
 'LFACC_03_DoubleCurve_StopnGo'
 'LFACC_04_Curve_CutInOut'
 'LFACC_05_Curve_CutInOut_TooClose'

Open Test Bench Model

Open the Simulink test bench model.

open_system('LaneFollowingTestBenchExample')

The model contains four main components:

11 Automated Driving Applications

11-52

1 Lane Following Controller - Controls both the longitudinal acceleration and front steering angle
of the ego vehicle

2 Vehicle and Environment - Models the motion of the ego vehicle and models the environment
3 Collision Detection - Stops the simulation when a collision of the ego vehicle and lead vehicle is

detected
4 MIO Track - Enables MIO track for display in the Bird's-Eye Scope.

Opening this model also runs the helperLFSetUp script, which initializes the data used by the model
by running the scenario function and loading constants needed by the Simulink model, such as the
vehicle model parameters, controller design parameters, road scenario, and surrounding cars.

Plot the road and the path that the ego vehicle will follow.

plot(scenario)

To plot the results of the simulation and depict the ego vehicle surroundings and tracked objects, use
the Bird's-Eye Scope (Automated Driving Toolbox). The Bird's-Eye Scope is a model-level visualization
tool that you can open from the Simulink toolstrip. On the Simulation tab, under Review Results,
click Bird's-Eye Scope. After opening the scope, set up the signals by clicking Find Signals.

To get a mid-simulation view, simulate the model for 10 seconds.

sim('LaneFollowingTestBenchExample','StopTime','10')

 Lane Following Control with Sensor Fusion and Lane Detection

11-53

After simulating the model for 10 seconds, open the Bird's-Eye Scope. In the scope toolstrip, to
display the World Coordinates View of the scenario, click World Coordinates. In this view, the ego
vehicle is circled. To display the legend for the Vehicle Coordinates View, click Legend.

The Bird's-Eye Scope shows the results of the sensor fusion. It shows how the radar and vision
sensors detect the vehicles within their coverage areas. It also shows the tracks maintained by the
Multi-Object Tracker (Automated Driving Toolbox) block. The yellow track shows the most important
object (MIO), which is the closest track in front of the ego vehicle in its lane. The ideal lane markings
are also shown along with the synthetically detected left and right lane boundaries (shown in red).

Simulate the model to the end of the scenario.

sim('LaneFollowingTestBenchExample')

 Assuming no disturbance added to measured output channel #3.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #4 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

11 Automated Driving Applications

11-54

Plot the controller performance.

plotLFResults(logsout,time_gap,default_spacing)

 Lane Following Control with Sensor Fusion and Lane Detection

11-55

11 Automated Driving Applications

11-56

The first figure shows the following spacing control performance results.

• The Velocity plot shows that the ego vehicle maintains velocity control from 0 to 11 seconds,
switches to spacing control from 11 to 16 seconds, then switches back to velocity control.

• The Distance between two cars plot shows that the actual distance between lead vehicle and
ego vehicle is always greater than the safe distance.

• The Acceleration plot shows that the acceleration for ego vehicle is smooth.
• The Collision status plot shows that no collision between lead vehicle and ego vehicle is

detected, thus the ego vehicle runs in a safe mode.

The second figure shows the following lateral control performance results.

• The Lateral deviation plot shows that the distance to the lane centerline is within 0.2 m.
• The Relative yaw angle plot shows that the yaw angle error with respect to lane centerline is

within 0.03 rad (less than 2 degrees).

 Lane Following Control with Sensor Fusion and Lane Detection

11-57

• The Steering angle plot shows that the steering angle for ego vehicle is smooth.

Explore Lane Following Controller

The Lane Following Controller subsystem contains three main parts: 1) Estimate Lane Center 2)
Tracking and Sensor Fusion 3) MPC Controller

open_system('LaneFollowingTestBenchExample/Lane Following Controller')

The Estimate Lane Center subsystem outputs the lane sensor data to the MPC controller. The
previewed curvature provides the centerline of lane curvature ahead of the ego vehicle. In this
example, the ego vehicle can look ahead for 3 seconds, which is the product of the prediction horizon
and the controller sample time. The controller uses previewed information for calculating the ego
vehicle steering angle, which improves the MPC controller performance. The lateral deviation
measures the distance between the ego vehicle and the centerline of the lane. The relative yaw angle
measures the yaw angle difference between the ego vehicle and the road. The ISO 8855 to SAE J670E
block inside the subsystem converts the coordinates from Lane Detections, which use ISO 8855, to
the MPC Controller which uses SAE J670E.

The Tracking and Sensor Fusion subsystem processes vision and radar detections coming from the
Vehicle and Environment subsystem and generates a comprehensive situation picture of the
environment around the ego vehicle. Also, it provides the lane following controller with an estimate of
the closest vehicle in the lane in front of the ego vehicle.

11 Automated Driving Applications

11-58

The goals for the MPC Controller block are to:

• Maintain the driver-set velocity and keep a safe distance from lead vehicle. This goal is achieved
by controlling the longitudinal acceleration.

• Keep the ego vehicle in the middle of the lane; that is reduce the lateral deviation and the
relative yaw angle , by controlling the steering angle.

• Slow down the ego vehicle when road is curvy. To achieve this goal, the MPC controller has larger
penalty weights on lateral deviation than on longitudinal speed.

The MPC controller is designed within the Path Following Control (PFC) System block based on the
entered mask parameters, and the designed MPC Controller is an adaptive MPC which updates the
vehicle model at run time. The lane following controller calculates the longitudinal acceleration and
steering angle for the ego vehicle based on the following inputs:

• Driver-set velocity
• Ego vehicle longitudinal velocity
• Previewed curvature (derived from Lane Detections)
• Lateral deviation (derived from Lane Detections)
• Relative yaw angle (derived from Lane Detections)
• Relative distance between lead vehicle and ego vehicle (from the Tracking and Sensor Fusion

system)
• Relative velocity between lead vehicle and ego vehicle (from the Tracking and Sensor Fusion

system)

Considering the physical limitations of the ego vehicle, the steering angle is constrained to be within
[-0.26,0.26] rad, and the longitudinal acceleration is constrained to be within [-3,2] m/s^2.

Explore Vehicle and Environment

The Vehicle and Environment subsystem enables closed-loop simulation of the lane following
controller.

 Lane Following Control with Sensor Fusion and Lane Detection

11-59

open_system('LaneFollowingTestBenchExample/Vehicle and Environment')

The System Latency blocks model the latency in the system between model inputs and outputs. The
latency can be caused by sensor delay or communication delay. In this example, the latency is
approximated by one sample time seconds.

The Vehicle Dynamics subsystem models the vehicle dynamics using a Bicycle Model - Force Input
block from the Vehicle Dynamics Blockset™. The lower-level dynamics are modeled by a first-order
linear system with a time constant of seconds.

The SAE J670E to ISO 8855 subsystem converts the coordinates from Vehicle Dynamics, which uses
SAE J670E, to Scenario Reader, which uses ISO 8855.

The Scenario Reader (Automated Driving Toolbox) block reads the actor poses data from the base
workspace scenario variable. The block converts the actor poses from the world coordinates of the
scenario into ego vehicle coordinates. The actor poses are streamed on a bus generated by the block.
The Scenario Reader block also generates the ideal left and right lane boundaries based on the
position of the vehicle with respect to the scenario used in helperLFSetUp.

The Vision Detection Generator (Automated Driving Toolbox) block takes the ideal lane boundaries
from the Scenario Reader block. The detection generator models the field of view of a monocular
camera and determines the heading angle, curvature, curvature derivative, and valid length of each
road boundary, accounting for any other obstacles. The Driving Radar Data Generator (Automated
Driving Toolbox) block generates clustered detections from the ground-truth data present in the field-
of-view of the radar based on the radar cross-section defined in the scenario.

Run Controller for Multiple Test Scenarios

This example uses multiple test scenarios based on ISO standards and real-world scenarios. To verify
the controller performance, you can test the controller for multiple scenarios and tune the controller
parameters if the performance is not satisfactory. To do so:

1 Select the scenario by changing the scenario name input to helperLFSetUp.
2 Configure the simulation parameters by running helperLFSetUp.
3 Simulate the model with the selected scenario.
4 Evaluate the controller performance using plotLFResults
5 Tune the controller parameters if the performance is not satisfactory.

11 Automated Driving Applications

11-60

You can automate the verification and validation of the controller using Simulink Test™.

Generate Code for the Control Algorithm

The LFRefMdl model supports generating C code using Embedded Coder® software. To check if you
have access to Embedded Coder, run:

hasEmbeddedCoderLicense = license('checkout','RTW_Embedded_Coder')

You can generate a C function for the model and explore the code generation report by running:

if hasEmbeddedCoderLicense
 rtwbuild('LFRefMdl')
end

You can verify that the compiled C code behaves as expected using software-in-the-loop (SIL)
simulation. To simulate the LFRefMdl referenced model in SIL mode, use:

if hasEmbeddedCoderLicense
 set_param('LaneFollowingTestBenchExample/Lane Following Controller',...
 'SimulationMode','Software-in-the-loop (SIL)')
end

When you run the LaneFollowingTestBenchExample model, code is generated, compiled, and
executed for the LFRefMdl model, which enables you to test the behavior of the compiled code
through simulation.

Conclusions

This example shows how to implement an integrated lane following controller on a curved road with
sensor fusion and lane detection, test it in Simulink using synthetic data generated using Automated
Driving Toolbox software, componentize it, and automatically generate code for it.

close all
bdclose all

See Also
Blocks
Lane Keeping Assist System

More About
• “Automated Driving Using Model Predictive Control” on page 11-2
• “Highway Lane Following” on page 11-62

 Lane Following Control with Sensor Fusion and Lane Detection

11-61

Highway Lane Following
This example shows how to simulate a highway lane following application with vision processing,
sensor fusion, and controller components. These components are tested in a 3D simulation
environment that includes camera and radar sensor models.

Introduction

A highway lane following system steers a vehicle to travel within a marked lane. It also maintains a
set velocity or safe distance to a preceding vehicle in the same lane. The system typically uses vision
processing algorithms to detect lanes and vehicles from a camera. The vehicle detections from the
camera are then fused with detections from a radar to improve the robustness of perception. The
controller uses the lane detections, vehicle detections, and set speed to control steering and
acceleration.

This example demonstrates how to create a test bench model to test vision processing, sensor fusion,
and controls in a 3D simulation environment. The test bench model can be configured for different
scenarios to test the ability to follow lanes and avoid collisions with other vehicles. In this example,
you:

1 Partition the algorithm and test bench — The model is partitioned into lane following
algorithm models and a test bench model. The algorithm models implement the individual
components. The test bench includes the integration of the algorithm models, and virtual testing
framework.

2 Explore the test bench model — The test bench model contains the testing framework, which
includes the scenario, ego vehicle dynamics model, and metrics assessment using ground truth. A
cuboid scenario defines vehicle trajectories and specifies the ground truth. An equivalent Unreal
Engine® scene is used to model detections from a radar sensor and images from a monocular
camera sensor. A bicycle model is used to model the ego vehicle.

3 Explore the algorithm models — Algorithm models are reference models that implement
vision processing, sensor fusion, decision logic, and controls components to build the lane
following application.

4 Visualize a test scenario — The scenario contains a curved road with multiple vehicles.
5 Simulate the test bench model — The model is simulated to test integration of the vision

processing, sensor fusion, and controls components.
6 Explore additional scenarios — These scenarios test the system under additional conditions.

Testing the integration of the controller and the perception algorithm requires a photorealistic
simulation environment. In this example, you enable system-level simulation through integration with
the Unreal Engine from Epic Games®. The 3D simulation environment requires a Windows® 64-bit
platform.

if ~ispc
 error(['3D Simulation is supported only on Microsoft', char(174), ' Windows', char(174), '.'])
end

To ensure reproducibility of the simulation results, set the random seed.

rng(0)

Partition Algorithm and Test Bench

The model is partitioned into separate algorithm and test bench models.

11 Automated Driving Applications

11-62

• Algorithm models — Algorithm models are reference models that implement the functionality of
individual components.

• Test bench model — The Highway Lane Following test bench specifies the stimulus and
environment to test the algorithm models.

Explore Test Bench Model

In this example, you use a system-level simulation test bench model to explore the behavior of the
control and vision processing algorithms for the lane following system.

To explore the test bench model, open a working copy of the project example files. MATLAB® copies
the files to an example folder so that you can edit them.

addpath(fullfile(matlabroot, 'toolbox', 'driving', 'drivingdemos'));
helperDrivingProjectSetup('HighwayLaneFollowing.zip', 'workDir', pwd);

Open the system-level simulation test bench model.

open_system("HighwayLaneFollowingTestBench")

The test bench model contains these modules:

• Simulation 3D Scenario — Subsystem that specifies the road, vehicles, camera sensor, and radar
sensor used for simulation.

• Lane Marker Detector — Algorithm model to detect the lane boundaries in the frame captured by
the camera sensor.

• Vehicle Detector — Algorithm model to detect vehicles in the frame captured by the camera
sensor.

• Forward Vehicle Sensor Fusion — Algorithm model to fuse vehicle detections from the camera and
radar sensors.

 Highway Lane Following

11-63

• Lane Following Decision Logic — Algorithm model to specify the lateral and longitudinal decision
logic that provides information related to the most important object (MIO) and lane center to the
controller.

• Lane Following Controller — Algorithm model that specifies the steering angle and acceleration
controls.

• Vehicle Dynamics — Subsystem that specifies the dynamic model of the ego vehicle.
• Metrics Assessment — Subsystem that assesses system-level behavior.

The Simulation 3D Scenario subsystem configures the road network, positions vehicles, and
synthesizes sensors. Open the Simulation 3D Scenario subsystem.

open_system("HighwayLaneFollowingTestBench/Simulation 3D Scenario")

11 Automated Driving Applications

11-64

The scene and road network are specified by these parts of the subsystem:

 Highway Lane Following

11-65

• The Simulation 3D Scene Configuration (Automated Driving Toolbox) block has the SceneName
parameter set to Curved road.

• The Scenario Reader (Automated Driving Toolbox) block is configured to use a driving scenario
that contains a road network that closely matches a section of the road network from the Curved
road scene.

The vehicle positions are specified by these parts of the subsystem:

• The Ego input port controls the position of the ego vehicle, which is specified by the Simulation 3D
Vehicle with Ground Following 1 block.

• The Vehicle To World (Automated Driving Toolbox) block converts actor poses from the
coordinates of the ego vehicle to the world coordinates.

• The Scenario Reader (Automated Driving Toolbox) block outputs actor poses, which control the
position of the target vehicles. These vehicles are specified by the other Simulation 3D Vehicle
with Ground Following (Automated Driving Toolbox) blocks.

• The Cuboid To 3D Simulation (Automated Driving Toolbox) block converts the ego pose coordinate
system (with respect to below the center of the vehicle rear axle) to the 3D simulation coordinate
system (with respect to below the vehicle center).

The sensors attached to the ego vehicle are specified by these parts of the subsystem:

• The Simulation 3D Camera (Automated Driving Toolbox) block is attached to the ego vehicle to
capture its front view. The output image from this block is processed by the Lane Marker Detector
block to detect the lanes and Vehicle Detector block to detect the vehicles.

• The Simulation 3D Probabilistic Radar Configuration (Automated Driving Toolbox) block is
attached to the ego vehicle to detect vehicles in 3D simulation environment.

• The Measurement Bias Center to Rear Axle block converts the coordinate system of the
Simulation 3D Probabilistic Radar Configuration (Automated Driving Toolbox) block (with respect
to below the vehicle center) to the ego pose coordinates (with respect to below the center of the
vehicle rear axle).

The Vehicle Dynamics subsystem uses a Bicycle Model block to model the ego vehicle. Open the
Vehicle Dynamics subsystem.

open_system("HighwayLaneFollowingTestBench/Vehicle Dynamics");

11 Automated Driving Applications

11-66

The Bicycle Model block implements a rigid two-axle single track vehicle body model to calculate
longitudinal, lateral, and yaw motion. The block accounts for body mass, aerodynamic drag, and
weight distribution between the axles due to acceleration and steering. For more details, see Bicycle
Model (Automated Driving Toolbox).

The Metric Assessment subsystem enables system-level metric evaluations using the ground truth
information from the scenario. Open the Metrics Assessment subsystem.

open_system("HighwayLaneFollowingTestBench/Metrics Assessment");

In this example, four metrics are used to assess the lane-following system.

• Verify Lateral Deviation — This block verifies that the lateral deviation from the center line of the
lane is within prescribed thresholds for the corresponding scenario. Define the thresholds when
you author the test scenario.

• Verify In Lane — This block verifies that the ego vehicle is following one of the lanes on the road
throughout the simulation.

• Verify Time gap — This block verifies that the time gap between the ego vehicle and the lead
vehicle is more than 0.8 seconds. The time gap between the two vehicles is defined as the ratio of
the calculated headway distance to the ego vehicle velocity.

• Verify No Collision — This block verifies that the ego vehicle does not collide with the lead vehicle
at any point during the simulation. For more details on how to integrate these metrics with
Simulink Test™ for enabling automatic regression testing, see “Automate Testing for Highway
Lane Following” (Automated Driving Toolbox).

 Highway Lane Following

11-67

Explore Algorithm Models

The lane following system is developed by integrating the lane marker detector, vehicle detector,
forward vehicle sensor fusion, lane following decision logic, and lane following controller
components.

The lane marker detector algorithm model implements a perception module to analyze the images of
roads. Open the Lane Marker Detector algorithm model.

open_system("LaneMarkerDetector");

The lane marker detector takes the frame captured by a monocular camera sensor as input. It also
takes in the camera intrinsic parameters through the mask. It detects the lane boundaries and
outputs the lane information and marking type of each lane through the LaneSensor bus. For more
details on how to design and evaluate a lane marker detector, see “Design Lane Marker Detector
Using Unreal Engine Simulation Environment” (Automated Driving Toolbox) and “Generate Code for
Lane Marker Detector” (Automated Driving Toolbox).

The vehicle detector algorithm model detects vehicles in the driving scenario. Open the Vehicle
Detector algorithm model.

open_system("VisionVehicleDetector");

11 Automated Driving Applications

11-68

The vehicle detector takes the frame captured by a camera sensor as input. It also takes in the
camera intrinsic parameters through the mask. It detects the vehicles and outputs the vehicle
information as bounding boxes. For more details on how to design and evaluate a vehicle detector,
see “Generate Code for Vision Vehicle Detector” (Automated Driving Toolbox).

The forward vehicle sensor fusion component fuses vehicle detections the from camera and radar
sensors and tracks the detected vehicles using the central level tracking method. Open the Forward
Vehicle Sensor Fusion algorithm model.

open_system("ForwardVehicleSensorFusion");

The forward vehicle sensor fusion model takes in the vehicle detections from vision and radar sensors
as inputs. The radar detections are clustered and then concatenated with vision detections. The
concatenated vehicle detections are then tracked using a joint probabilistic data association tracker.
This component outputs the confirmed tracks. For more details on forward vehicle sensor fusion, see
“Forward Vehicle Sensor Fusion” (Automated Driving Toolbox).

The lane following decision logic algorithm model specifies lateral and longitudinal decisions based
on the detected lanes and tracks. Open the Lane Following Decision Logic algorithm model.

open_system("LaneFollowingDecisionLogic");

 Highway Lane Following

11-69

The lane following decision logic model takes the detected lanes from the lane marker detector and
the confirmed tracks from the forward vehicle sensor fusion module as inputs. It estimates the lane
center and also determines the MIO lead car traveling in the same lane as the ego vehicle. It outputs
the relative distance and relative velocity between the MIO and ego vehicle.

The lane following controller specifies the longitudinal and lateral controls. Open the Lane Following
Controller algorithm model.

open_system("LaneFollowingController");

11 Automated Driving Applications

11-70

The controller takes the set velocity, lane center, and MIO information as inputs. It uses a path
following controller to control the steering angle and acceleration for the ego vehicle. It also uses a
watchdog braking controller to apply brakes as a fail-safe mode. The controller outputs the steering
angle and acceleration command that determines whether to accelerate, decelerate, or apply brakes.
The Vehicle Dynamics block uses these outputs for lateral and longitudinal control of the ego vehicle.

Visualize Test Scenario

The helper function scenario_LFACC_03_Curve_StopnGo generates a cuboid scenario that is
compatible with the HighwayLaneFollowingTestBench model. This is an open-loop scenario
containing multiple target vehicles on a curved road. The road centers, lane markings, and vehicles in
this cuboid scenario closely match a section of the curved road scene provided with the 3D simulation
environment. In this scenario, a lead vehicle slows down in front of the ego vehicle while other
vehicles travel in adjacent lanes.

Plot the open-loop scenario to see the interactions of the ego vehicle and target vehicles.

hFigScenario = helperPlotLFScenario("scenario_LFACC_03_Curve_StopnGo");

 Highway Lane Following

11-71

The ego vehicle is not under closed-loop control, so a collision occurs with the slower moving lead
vehicle. The goal of the closed-loop system is to follow the lane and maintain a safe distance from the
lead vehicles. In the HighwayLaneFollowingTestBench model, the ego vehicle has the same initial
velocity and initial position as in the open-loop scenario.

Close the figure.

close(hFigScenario)

Simulate the test bench model

Configure and test the integration of the algorithms in the 3D simulation environment. To reduce
command-window output, turn off the MPC update messages.

mpcverbosity('off');

Configure the test bench model to use the same scenario.

helperSLHighwayLaneFollowingSetup("scenarioFcnName",...
 "scenario_LFACC_03_Curve_StopnGo");
sim("HighwayLaneFollowingTestBench")

Plot the lateral controller performance results.

hFigLatResults = helperPlotLFLateralResults(logsout);

11 Automated Driving Applications

11-72

Close the figure.

close(hFigLatResults)

Examine the simulation results.

• The Detected lane boundary lateral offsets plot shows the lateral offsets of the detected left-
lane and right-lane boundaries from the centerline of the lane. The detected values are close to
the ground truth of the lane but deviate by small quantities.

• The Lateral deviation plot shows the lateral deviation of the ego vehicle from the centerline of
the lane. Ideally, lateral deviation is zero meters, which implies that the ego vehicle exactly follows
the centerline. Small deviations occur when the vehicle is changing velocity to avoid collision with
another vehicle.

• The Relative yaw angle plot shows the relative yaw angle between ego vehicle and the centerline
of the lane. The relative yaw angle is very close to zero radian, which implies that the heading
angle of the ego vehicle matches the yaw angle of the centerline closely.

 Highway Lane Following

11-73

• The Steering angle plot shows the steering angle of the ego vehicle. The steering angle
trajectory is smooth.

Plot the longitudinal controller performance results.

hFigLongResults = helperPlotLFLongitudinalResults(logsout,time_gap,...
 default_spacing);

Close the figure.

close(hFigLongResults)

Examine the simulation results.

• The Relative longitudinal distance plot shows the distance between the ego vehicle and the
MIO. In this case, the ego vehicle approaches the MIO and gets close to it or exceeds the safe
distance in some cases.

11 Automated Driving Applications

11-74

• The Relative longitudinal velocity plot shows the relative velocity between the ego vehicle and
the MIO. In this example, the vehicle detector only detects positions, so the tracker in the control
algorithm estimates the velocity. The estimated velocity lags the actual (ground truth) MIO
relative velocity.

• The Absolute acceleration plot shows that the controller commands the vehicle to decelerate
when it gets too close to the MIO.

• The Absolute velocity plot shows the ego vehicle initially follows the set velocity, but when the
MIO slows down, to avoid a collision, the ego vehicle also slows down.

During simulation, the model logs signals to the base workspace as logsout and records the output
of the camera sensor to forwardFacingCamera.mp4. You can use the
helperPlotLFDetectionResults function to visualize the simulated detections similar to how
recorded data is explored in the “Forward Collision Warning Using Sensor Fusion” (Automated
Driving Toolbox) example. You can also record the visualized detections to a video file to enable
review by others who do not have access to MATLAB.

Plot the detection results from logged data, generate a video, and open the Video Viewer (Image
Processing Toolbox) app.

hVideoViewer = helperPlotLFDetectionResults(...
 logsout, "forwardFacingCamera.mp4" , scenario, camera, radar,...
 scenarioFcnName,...
 "RecordVideo", true,...
 "RecordVideoFileName", scenarioFcnName + "_VPA",...
 "OpenRecordedVideoInVideoViewer", true,...
 "VideoViewerJumpToTime", 10.6);

 Highway Lane Following

11-75

Play the generated video.

• Front Facing Camera shows the image returned by the camera sensor. The left lane boundary is
plotted in red and the right lane boundary is plotted in green. These lanes are returned by the
Lane Marker Detector model. Tracked detections are also overlaid on the video.

• Bird's-Eye Plot shows true vehicle positions, sensor coverage areas, probabilistic detections, and
track outputs. The plot title includes the simulation time so that you can correlate events between
the video and previous static plots.

Close the figure.

close(hVideoViewer)

Explore Additional Scenarios

The previous simulations tested the scenario_LFACC_03_Curve_StopnGo scenario. This example
provides additional scenarios that are compatible with the HighwayLaneFollowingTestBench
model:

 scenario_LF_01_Straight_RightLane
 scenario_LF_02_Straight_LeftLane
 scenario_LF_03_Curve_LeftLane
 scenario_LF_04_Curve_RightLane
 scenario_LFACC_01_Curve_DecelTarget
 scenario_LFACC_02_Curve_AutoRetarget
 scenario_LFACC_03_Curve_StopnGo

11 Automated Driving Applications

11-76

 scenario_LFACC_04_Curve_CutInOut
 scenario_LFACC_05_Curve_CutInOut_TooClose
 scenario_LFACC_06_Straight_StopandGoLeadCar

These scenarios represent two types of testing.

• Use scenarios with the scenario_LF_ prefix to test lane-detection and lane-following algorithms
without obstruction from other vehicles. The vehicles in the scenario are positioned such that they
are not seen by the ego vehicle.

• Use scenarios with the scenario_LFACC_ prefix to test lane-detection and lane-following
algorithms with other vehicles that are within the sensor coverage area of the ego vehicle.

Examine the comments in each file for more details about the geometry of the road and vehicles in
each scenario. You can configure the HighwayLaneFollowingTestBench model and workspace to
simulate these scenarios using the helperSLHighwayLaneFollowingSetup function.

For example, while evaluating the effects of a camera-based lane detection algorithm on closed-loop
control, it can be helpful to begin with a scenario that has a road but no vehicles. To configure the
model and workspace for such a scenario, use the following code.

helperSLHighwayLaneFollowingSetup("scenarioFcnName",...
 "scenario_LF_04_Curve_RightLane");

Enable the MPC update messages again.

mpcverbosity('on');

Conclusion

This example showed how to integrate vision processing, sensor fusion and controller components to
simulate a highway lane following system in a closed-loop 3D simulation environment. The example
also demonstrated various evaluation metrics to validate the performance of the designed system. If
you have license to Simulink Coder™ and Embedded Coder™, you can generate ready to deploy code
of the algorithm models for embedded real-time target (ERT).

Copyright 2019-2020 The MathWorks, Inc.

See Also
Blocks
Lane Keeping Assist System

More About
• “Automated Driving Using Model Predictive Control” on page 11-2

 Highway Lane Following

11-77

Highway Lane Change
This example shows how to simulate an automated lane change maneuver system for highway driving
scenario.

Introduction

An automated lane change maneuver (LCM) system enables the ego vehicle to automatically move
from one lane to another lane. The LCM system models the longitudinal and lateral control dynamics
for automated lane change. An LCM system senses the environment for most important objects
(MIOs) using on-board sensors, identifies an optimal trajectory that avoids these objects, and steers
the ego vehicle along this trajectory.

This example shows how to design and test the planner and controller components of an LCM system.
In this example, the lane change planner uses ground truth information from the scenario to detect
MIOs. It then generates a feasible trajectory to negotiate a lane change that is executed by the lane
change controller. In this example, you:

• Explore the test bench model — The model contains planning, controls, vehicle dynamics,
scenario, and metrics to assess functionality.

• Model the lane change planner — The reference model finds the MIO, samples terminal states
of the ego vehicle, and generates an optimal trajectory.

• Model the lane change controller — This model generates control commands for the ego
vehicle based on the generated trajectory.

• Simulate and visualize system behavior — The test bench model is configured to test the
integration of planning and controls to perform lane change maneuvers on a curved road with
multiple vehicles.

• Explore other scenarios — These scenarios test the system under additional conditions.

You can apply the modeling patterns used in this example to test your own planner and controller
components of an LCM system.

Explore Test Bench Model

In this example, you use a system-level simulation test bench model to explore the behavior of the
planner and controller components for a lane change maneuver system.

To explore the test bench model, open a working copy of the project example files. MATLAB® copies
the files to an example folder so that you can edit them.

addpath(fullfile(matlabroot, 'toolbox', 'driving', 'drivingdemos'));
helperDrivingProjectSetup('HighwayLaneChange.zip', 'workDir', pwd);

Open the system-level simulation test bench model.

open_system('HighwayLaneChangeTestBench')

11 Automated Driving Applications

11-78

Opening this model runs the helperSLHighwayLaneChangeSetup script that initializes the road
scenario using the drivingScenario (Automated Driving Toolbox) object in the base workspace. It
also configures the planner configuration parameters, controller design parameters, vehicle model
parameters, and the Simulink® bus signals required for defining the inputs and outputs for the
HighwayLaneChangeTestBench model.

The test bench model contains the following subsystems.

• Scenario and Environment — Subsystem that specifies the scene, vehicles, and map data used for
simulation.

• Planner Configuration Parameters — Subsystem that specifies the configuration parameters
required for the planner algorithm.

• Highway Lane Change Planner — Subsystem that implements the lane change planner algorithm
for highway.

• Lane Change Controller — Subsystem that specifies the path following controller that generates
control commands to steer the ego vehicle along the generated trajectory.

• Vehicle Dynamics — Subsystem that specifies the dynamic model for the ego vehicle.
• Metrics Assessment — Subsystem that specifies metrics to assess system level behavior.

The Vehicle Dynamics subsystem models the ego vehicle using a Bicycle Model (Automated Driving
Toolbox) and updates its state using commands received from the Lane Change Controller. For more
details on Vehicle Dynamics subsystem, see “Highway Lane Following” (Automated Driving Toolbox)
example.

The Scenario and Environment subsystem uses the Scenario Reader (Automated Driving Toolbox)
block to provide road network and vehicle ground truth positions. This block also outputs map data
required for the highway lane change planner algorithm. Open the Scenario and Environment
subsystem.

 Highway Lane Change

11-79

open_system('HighwayLaneChangeTestBench/Scenario and Environment')

The Scenario Reader (Automated Driving Toolbox) block is configured to read the drivingScenario
(Automated Driving Toolbox) object from the base workspace. It uses this object to read the actor
data. It takes in ego vehicle information to perform a closed-loop simulation. This block outputs
ground truth information of the lanes and actors in ego vehicle coordinates. The Vehicle To World
(Automated Driving Toolbox) block is used to convert target vehicle positions from the vehicle
coordinates to world coordinates. This subsystem reads map data from the base workspace and
outputs information about the lanes and reference path.

The Planner Configuration Parameters subsystem reads base workspace variables using constant
blocks and constructs a bus structure using the Bus Creator block. The bus created by this subsystem
is used by the lane change planner.

The Highway Lane Change Planner reference model uses ground truth actor positions in world
coordinates, map data, and planner configuration parameters to perform trajectory planning for the
automated lane change maneuver.

Model Highway Lane Change Planner

The Highway Lane Change Planner reference model implements the main algorithm for the highway
lane change system. The model finds the MIOs surrounding the ego vehicle using the Fernet
coordinate system. Subsequently, the model samples terminal states for different behaviors, predicts
the motion of target actors, and generates multiple trajectories. Finally, the model evaluates the costs

11 Automated Driving Applications

11-80

of generated trajectories and checks for the possibility of collision and kinematic feasibility to
estimate the optimal trajectory. Open the Highway Lane Change Planner reference model.

open_system('HighwayLaneChangePlanner')

The Highway Lane Change Planner model contains the following blocks:

• The Frenet State Converter block converts the pose of the ego vehicle and other vehicles in the
scenario into the Frenet coordinate system from world coordinates.

• The Find MIOs block identifies the most important objects (MIOs) surrounding the ego vehicle.
• The Terminal State Sampler block samples terminal states for cruise control, lead car following,

and lane change behaviors. The Motion Prediction module predicts the motion of MIOs.
• The Motion Planner reference model generates an optimal trajectory from the sampled

trajectories. This model checks the sampled trajectories for cost, feasibility, and the possibility of
collision to identify the optimal trajectory. This block also computes the appropriate point on the
trajectory for the ego vehicle to follow. For more information on the Highway Lane Change
Planner, see “Generate Code for Highway Lane Change Planner” (Automated Driving Toolbox).

Model Lane Change Controller

The Lane Change Controller reference model simulates a path following control mechanism that
keeps the ego vehicle traveling along the generated trajectory while tracking a set velocity. To do so,
the controller adjusts both the longitudinal acceleration and front steering angle of the ego vehicle.
The controller computes optimal control actions while satisfying velocity, acceleration, and steering
angle constraints using adaptive model predictive control (MPC). Open the Lane Change Controller
reference model.

open_system('LaneChangeController')

 Highway Lane Change

11-81

• The Virtual Lane Center subsystem creates a virtual lane from the path point. The virtual lane
matches the format required by the Path Following Controller block.

• The Preview Curvature subsystem converts trajectory to curvature input required by Path
Following Controller block.

• The Path Following Controller block uses the Path Following Control System block from the Model
Predictive Control Toolbox™.

The Path Following Controller block keeps the vehicle traveling within a marked lane of a highway
while maintaining a user-set velocity. This controller includes combined longitudinal and lateral
control of the ego vehicle:

• Longitudinal control maintains a user-set velocity of the ego vehicle.
• Lateral control keeps the ego vehicle traveling along the center line of its lane by adjusting the

steering of the ego vehicle.

Explore Metrics Assessment

The Metrics Assessment subsystem assesses system level behavior of the LCM system using the
metrics mentioned below. Open the Metrics Assessment subsystem.

open_system('HighwayLaneChangeTestBench/Metrics Assessment')

11 Automated Driving Applications

11-82

• The DetectCollision block detects the collision of the ego vehicle with other vehicles and halts
the simulation if a collision is detected.

• The DetectLeadVehicle block computes the headway between the ego and lead vehicles, which is
used for computing the TimeGap value.

• The TimeGap value is calculated using the distance to the lead vehicle (headway) and the
longitudinal velocity of the ego vehicle, and it is evaluated against prescribed limits.

• The LongitudinalJerk value is calculated using the longitudinal velocity and evaluated against
prescribed limits.

• The LateralJerk value is calculated using the lateral velocity evaluated against prescribed limits.

Simulate and Visualize System Behavior

Set up and run the HighwayLaneChangeTestBench simulation model to visualize the behavior of
the system during a lane change. The Visualization block in the model creates a MATLAB figure that
shows the chase view and top view of the scenario and plots the ego vehicle, sampled trajectories,

 Highway Lane Change

11-83

capsule list, and other vehicles in the scenario. Configure the HighwayLaneChangeTestBench
model to use the scenario_LC_15_StopnGo_Curved scenario.

helperSLHighwayLaneChangeSetup("scenarioFcnName","scenario_LC_15_StopnGo_Curved")

Simulate the model for 5 seconds. The lane change planner reference model generates a trajectory to
navigate the vehicle in the scenario. To reduce command-window output, first turn off the MPC
update messages.

mpcverbosity('off');
sim("HighwayLaneChangeTestBench","StopTime","5");

Close the figure.

hLCPlot = findobj('Type', 'Figure', 'Name', 'Lane Change Status Plot');
if ~isempty(hLCPlot)
 close(hLCPlot);
end

11 Automated Driving Applications

11-84

Run the simulation for 8 seconds. The lane change planner reference model generates a trajectory to
navigate around a slower lead vehicle.

sim("HighwayLaneChangeTestBench","StopTime","8");

Close the figure.

hLCPlot = findobj('Type', 'Figure', 'Name', 'Lane Change Status Plot');
if ~isempty(hLCPlot)
 close(hLCPlot);
end

Run the simulation for 18 seconds. The lane change planner reference model generates a trajectory
to navigate the vehicle to the left lane and then to the right lane to avoid collision with the slow
moving lead vehicle. Observe that the ego vehicle performs a lane change twice to avoid collision
while maintaining a set velocity.

simout = sim("HighwayLaneChangeTestBench","StopTime","18");

 Highway Lane Change

11-85

Close the figure.

hLCPlot = findobj('Type', 'Figure', 'Name', 'Lane Change Status Plot');
if ~isempty(hLCPlot)
 close(hLCPlot);
end

During the simulation, the model logs signals to base workspace as logsout. You can analyze the
simulation results and debug any failures in the system behavior using the
helperAnalyzeLCSimulationResults function. The function creates a MATLAB figure and plots
chase view of the scenario. The slider in the figure enables you to select a desired simulation step to
analyze different parameters shown in these panes:

• Chase View — Shows chase view of the scenario showing ego vehicle, sampled trajectories,
capsule list, and other vehicles.

• Trajectory Information — Shows different attributes of sampled trajectories. The highlighted
rows show the type of sampled trajectory by using the same color coding as shown in the Chase
View.

11 Automated Driving Applications

11-86

• MIO Information — Shows different attributes of identified MIOs. The color of the row matches
with the face color of the corresponding vehicle.

• Mode — Shows the selected behavior for the ego vehicle.
• Ego Velocity — Shows the velocity of ego vehicle. Units are in meters per second.
• Simulation Step — Shows the simulation step number set using the slider.
• Simulation Time — Shows time corresponding to simulation step. Units are in meters.
• Ego State — Shows parameters of the ego vehicle and identified lead vehicle.
• Planner Parameters — Shows configuration parameters for the planner.

Run the script and explore the plot.

helperAnalyzeLCSimulationResults(simout.logsout);

 Highway Lane Change

11-87

Explore Other Scenarios

In the previous section, you explored the system behavior for the
scenario_LC_15_StopnGo_Curved scenario. Below is a list of scenarios that are compatible with
the HighwayLaneChangeTestBench model.

scenario_LC_01_SlowMoving
scenario_LC_02_SlowMovingWithPassingCar
scenario_LC_03_DisabledCar
scenario_LC_04_CutInWithBrake
scenario_LC_05_SingleLaneChange
scenario_LC_06_DoubleLaneChange
scenario_LC_07_RightLaneChange
scenario_LC_08_SlowmovingCar_Curved
scenario_LC_09_CutInWithBrake_Curved
scenario_LC_10_SingleLaneChange_Curved
scenario_LC_11_MergingCar_HighwayEntry
scenario_LC_12_CutInCar_HighwayEntry
scenario_LC_13_DisabledCar_Ushape
scenario_LC_14_DoubleLaneChange_Ushape
scenario_LC_15_StopnGo_Curved [Default]

These scenarios are created using the Driving Scenario Designer (Automated Driving Toolbox) and
are exported to a scenario file. Examine the comments in each file for more details on the road and
vehicles in each scenario. You can configure the HighwayLaneChangeTestBench and workspace to
simulate these scenarios using the helperSLHighwayLaneChangeSetup function. For example, you
can configure the simulation for a curved road scenario.

helperSLHighwayLaneChangeSetup("scenarioFcnName","scenario_LC_10_SingleLaneChange_Curved");

Conclusion

This example shows how to simulate a highway lane change maneuver using ground truth vehicle
positions.

Enable the MPC update messages again.

mpcverbosity('on');

See Also

More About
• “Automated Driving Using Model Predictive Control” on page 11-2
• “Automate Testing for Highway Lane Following” on page 11-89
• “Highway Lane Change” on page 11-78

11 Automated Driving Applications

11-88

Automate Testing for Highway Lane Following
This example shows how to assess the functionality of a lane-following application by defining
scenarios based on requirements, automating testing of components and the generated code for
those components. The components include lane-detection, sensor fusion, decision logic, and
controls. This example builds on the “Highway Lane Following” (Automated Driving Toolbox)
example.

Introduction

A highway lane-following system steers a vehicle to travel within a marked lane. It also maintains a
set velocity or safe distance from a preceding vehicle in the same lane. The system typically includes
lane detection, sensor fusion, decision logic, and controls components. System-level simulation is a
common technique for assessing functionality of the integrated components. Simulations are
configured to test scenarios based on system requirements. Automatically running these simulations
enables regression testing to verify system-level functionality.

The “Highway Lane Following” (Automated Driving Toolbox) example showed how to simulate a
system-level model for lane-following. This example shows how to automate testing that model
against multiple scenarios using Simulink Test™. The scenarios are based on system-level
requirements. In this example, you will:

1 Review requirements: The requirements describe system-level test conditions. Simulation test
scenarios are created to represent these conditions.

2 Review the test bench model: Review the system-level lane-following test bench model that
contains metric assessments. These metric assessments integrate the test bench model with
Simulink Test for the automated testing.

3 Disable runtime visualizations: Runtime visualizations are disabled to reduce execution time
for the automated testing.

4 Automate testing: A test manager is configured to simulate each test scenario, assess success
criteria, and report results. The results are explored dynamically in the test manager and
exported to a PDF for external reviewers.

5 Automate testing with generated code: The lane detection, sensor fusion, decision logic, and
controls components are configured to generate C++ code. The automated testing is run on the
generated code to verify expected behavior.

6 Automate testing in parallel: Overall execution time for running the tests is reduced using
parallel computing on a multi-core computer.

Testing the system-level model requires a photorealistic simulation environment. In this example, you
enable system-level simulation through integration with the Unreal Engine from Epic Games®. The
3D simulation environment requires a Windows® 64-bit platform.

if ~ispc
 error("The 3D simulation environment requires a Windows 64-bit platform");
end

To ensure reproducibility of the simulation results, set the random seed.

rng(0);

 Automate Testing for Highway Lane Following

11-89

Review Requirements

Simulink Requirements™ lets you author, analyze, and manage requirements within Simulink. This
example contains ten test scenarios, with high-level testing requirements defined for each scenario.
Open the requirement set.

To explore the test requirements and test bench model, open a working copy of the project example
files. MATLAB copies the files to an example folder so that you can edit them. The TestAutomation
folder contains the files that enables the automate testing.

addpath(fullfile(matlabroot, 'toolbox', 'driving', 'drivingdemos'));
helperDrivingProjectSetup('HighwayLaneFollowing.zip', 'workDir', pwd);

open('HighwayLaneFollowingTestRequirements.slreqx')

Alternatively, you can also open the file from the Requirements tab of the Requirements Manager
app in Simulink.

Each row in this file specifies the requirements in textual and graphical formats for testing the lane-
following system for a test scenario. The scenarios with the scenario_LF_ prefix enable you to test
lane-detection and lane-following algorithms without obstruction by other vehicles. The scenarios
with the scenario_LFACC_ prefix enable you to test lane-detection, lane-following, and ACC behavior
with other vehicles on the road.

11 Automated Driving Applications

11-90

1 scenario_LF_01_Straight_RightLane — Straight road scenario with ego vehicle in right
lane.

2 scenario_LF_02_Straight_LeftLane — Straight road scenario with ego vehicle in left lane.
3 scenario_LF_03_Curve_LeftLane — Curved road scenario with ego vehicle in left lane.
4 scenario_LF_04_Curve_RightLane — Curved road scenario with ego vehicle in right lane.
5 scenario_LFACC_01_Curve_DecelTarget — Curved road scenario with a decelerating lead

vehicle in ego lane.
6 scenario_LFACC_02_Curve_AutoRetarget — Curved road scenario with changing lead

vehicles in ego lane. This scenario tests the ability of the ego vehicle to retarget to a new lead
vehicle while driving along a curve.

7 scenario_LFACC_03_Curve_StopnGo — Curved road scenario with a lead vehicle slowing
down in ego lane.

8 scenario_LFACC_04_Curve_CutInOut — Curved road scenario with a fast moving car in the
adjacent lane cuts into the ego lane and cuts out from ego lane.

9 scenario_LFACC_05_Curve_CutInOut_TooClose — Curved road scenario with a fast moving
car in the adjacent lane cuts into the ego lane and cuts out from ego lane aggressively.

10 scenario_LFACC_06_Straight_StopandGoLeadCar — Straight road scenario with a lead
vehicle that breaks down in ego lane.

These requirements are implemented as test scenarios with the same names as the scenarios used in
the HighwayLaneFollowingTestBench model.

Review Test Bench Model

This example reuses the HighwayLaneFollowingTestBench model from the “Highway Lane
Following” (Automated Driving Toolbox) example. Open the test bench model.

open_system("HighwayLaneFollowingTestBench");

 Automate Testing for Highway Lane Following

11-91

This test bench model has Simulation 3D Scenario, Lane Marker Detector, Vehicle Detector,
Forward Vehicle Sensor Fusion, Lane Following Decision Logic and Lane Following
Controller and Vehicle Dynamics components.

This test bench model is configured using the helperSLHighwayLaneFollowingSetup script. This
setup script takes scenarioName as input. scenarioName can be any one of the previously
described test scenarios. To run the setup script, use code:

scenarioName = "scenario_LFACC_03_Curve_StopnGo";
helperSLHighwayLaneFollowingSetup("scenarioFcnName",scenarioName);

You can now simulate the model and visualize the results. For more details on the analysis of the
simulation results and the design of individual components in the test bench model, see the “Highway
Lane Following” (Automated Driving Toolbox) example.

In this example, the focus is more on automating the simulation runs for this test bench model using
Simulink Test for the different test scenarios. The Metrics Assessment subsystem enables
integration of system-level metric evaluations with Simulink Test. This subsystem uses Check Static
Range (Simulink) blocks for this integration. Open the Metrics Assessment subsystem.

open_system("HighwayLaneFollowingTestBench/Metrics Assessment");

In this example, four metrics are used to assess the lane-following system.

• Verify Lateral Deviation: Verifies that the lateral deviation from the centerline of the lane is
within prescribed thresholds for the corresponding scenario. Prescribed thresholds are defined
while authoring the test scenario.

11 Automated Driving Applications

11-92

• Verify In Lane: Verifies that the ego vehicle is following one of the lanes on the road throughout
the simulation.

• Verify Time gap: Verifies that the time gap between the ego vehicle and the lead vehicle is above
0.8 seconds. The time gap between the two vehicles is defined as the ratio of the calculated
headway distance to the ego vehicle velocity.

• Verify No Collision: Verifies that the ego vehicle does not collide with the lead vehicle at any
point during the simulation.

Disable Runtime Visualizations

The system-level test bench model visualizes intermediate outputs during the simulation for the
analysis of different components in the model. These visualizations are not required when the tests
are automated. You can reduce execution time for the automated testing by disabling them.

Disable runtime visualizations for the Lane Marker Detector subsystem.

load_system('LaneMarkerDetector');
blk = 'LaneMarkerDetector/Lane Marker Detector';
set_param(blk,'EnableDisplays','off');

Disable runtime visualizations for the Vehicle Detector subsystem.

load_system('VisionVehicleDetector');
blk = 'VisionVehicleDetector/Vision Vehicle Detector/ACF/ACF';
set_param(blk,'EnableDisplay','off');

Configure the Simulation 3D Scene Configuration (Automated Driving Toolbox) block to run the
Unreal Engine in headless mode, where the 3D simulation window is disabled.

blk = ['HighwayLaneFollowingTestBench/Simulation 3D Scenario/', ...
 'Simulation 3D Scene Configuration'];
set_param(blk,'EnableWindow','off');

Automate Testing

The Test Manager is configured to automate the testing of the lane-following application. Open the
HighwayLaneFollowingTestAssessments.mldatx test file in the Test Manager.

sltestmgr;
testFile = sltest.testmanager.load('HighwayLaneFollowingTestAssessments.mldatx');

 Automate Testing for Highway Lane Following

11-93

Observe the populated test cases that were authored previously in this file. Each test case is linked to
the corresponding requirement in the Requirements Editor for traceability. Each test case uses the
POST-LOAD callback to run the setup script with appropriate inputs and to configure the output video
file name. After the simulation of the test case, it invokes
helperGenerateFilesForLaneFollowingReport from the CLEAN-UP callback to generate the
plots explained in the “Highway Lane Following” (Automated Driving Toolbox) example.

Run and explore results for a single test scenario:

To reduce command-window output, turn off the MPC update messages.

mpcverbosity('off');

To test the system-level model with the scenario_LFACC_03_Curve_StopnGo test scenario from
Simulink Test, use this code:

testSuite = getTestSuiteByName(testFile,'Test Scenarios');
testCase = getTestCaseByName(testSuite,'scenario_LFACC_03_Curve_StopnGo');
resultObj = run(testCase);

To generate a report after the simulation, use this code:

sltest.testmanager.report(resultObj,'Report.pdf',...,
 'Title','Highway Lane Following',...
 'IncludeMATLABFigures',true,...

11 Automated Driving Applications

11-94

 'IncludeErrorMessages',true,...
 'IncludeTestResults',0,'LaunchReport',true);

Examine the report Report.pdf. Observe that the Test environment section shows the platform on
which the test is run and the MATLAB® version used for testing. The Summary section shows the
outcome of the test and duration of the simulation in seconds. The Results section shows pass/fail
results based on the assessment criteria. This section also shows the plots logged from the
helperGenerateFilesForLaneFollowingReport function.

Run and explore results for all test scenarios:

You can simulate the system for all the tests by using sltest.testmanager.run. Alternatively, you
can simulate the system by clicking Play in the Test Manager app.

After completion of the test simulations, the results for all the tests can be viewed in the Results and
Artifacts tab of the Test Manager. For each test case, the Check Static Range (Simulink) blocks in
the model are associated with the Test Manager to visualize overall pass/fail results.

You can find the generated report in current working directory. This report contains a detailed
summary of pass/fail statuses and plots for each test case.

 Automate Testing for Highway Lane Following

11-95

Verify test status in Requirements Editor:

Open the Requirements Editor and select Display. Then, select Verification Status to see a
verification status summary for each requirement. Green and red bars indicate the pass/fail status of
simulation results for each test.

11 Automated Driving Applications

11-96

Automate Testing with Generated Code

The HighwayLaneFollowingTestBench model enables integrated testing of Lane Marker
Detector, Vehicle Detector, Forward Vehicle Sensor Fusion, Lane Following Decision Logic,
and Lane Following Controller components. It is often helpful to perform regression testing of
these components through software-in-the-loop (SIL) verification. If you have Embedded Coder™
Simulink Coder™ license, then you can generate code for these components. This workflow lets you
verify that the generated code produces expected results that match the system-level requirements
throughout simulation.

Set Lane Marker Detector to run in Software-in-the-loop mode.

model = 'HighwayLaneFollowingTestBench/Lane Marker Detector';
set_param(model,'SimulationMode','Software-in-the-loop');

Set Vehicle Detector to run in Software-in-the-loop mode.

model = 'HighwayLaneFollowingTestBench/Vehicle Detector';
set_param(model,'SimulationMode','Software-in-the-loop');

Set Forward Vehicle Sensor Fusion to run in Software-in-the-loop mode.

 Automate Testing for Highway Lane Following

11-97

model = 'HighwayLaneFollowingTestBench/Forward Vehicle Sensor Fusion';
set_param(model,'SimulationMode','Software-in-the-loop');

Set Lane Following Decision Logic to run in Software-in-the-loop mode.

model = 'HighwayLaneFollowingTestBench/Lane Following Decision Logic';
set_param(model,'SimulationMode','Software-in-the-loop');

Set Lane Following Controller to run in Software-in-the-loop mode.

model = 'HighwayLaneFollowingTestBench/Lane Following Controller';
set_param(model,'SimulationMode','Software-in-the-loop');

Now, run sltest.testmanager.run to simulate the system for all the test scenarios. After the
completion of tests, review the plots and results in the generated report.

Enable the MPC update messages again.

mpcverbosity('on');

Automate Testing in Parallel

If you have a Parallel Computing Toolbox™ license, then you can configure Test Manager to execute
tests in parallel using a parallel pool. To run tests in parallel, save the models after disabling the
runtime visualizations using save_system('LaneMarkerDetector'),
save_system('VisionVehicleDetector') and
save_system('HighwayLaneFollowingTestBench'). Test Manager uses the default Parallel
Computing Toolbox cluster and executes tests only on the local machine. Running tests in parallel can
speed up execution and decrease the amount of time it takes to get test results. For more information
on how to configure tests in parallel from the Test Manager, see “Run Tests Using Parallel Execution”
(Simulink Test).

See Also

More About
• “Automated Driving Using Model Predictive Control” on page 11-2
• “Highway Lane Following” on page 11-62

11 Automated Driving Applications

11-98

Highway Lane Following with Intelligent Vehicles
This example shows how to simulate a lane following application in a scenario that contains
intelligent target vehicles. The intelligent target vehicles are the non-ego vehicles in the scenario and
are programmed to adapt their trajectories based on the behavior of its neighboring vehicles. In this
example, you will:

1. Model the behavior of the target vehicles to dynamically adapt their trajectories in order to
perform one of the following behaviors: velocity keeping, lane following, or lane change.

2. Simulate and test the lane following application in response to the dynamic behavior of the target
vehicles on straight road and curved road scenarios.

You can also apply the modeling patterns used in this example to test your own lane following
algorithms.

Introduction

The highway lane following system developed in this example steers the ego vehicle to travel within a
marked lane. The system tests the lane following capability in the presence of other non-ego vehicles,
which are the target vehicles. For regression testing, it is often sufficient for the target vehicles to
follow a predefined trajectory. To randomize the behavior and identify edge cases like aggressive lane
change in front of the ego vehicle, it is beneficial to add intelligence to the target vehicles.

This example builds on the “Highway Lane Following” (Automated Driving Toolbox) example that
demonstrates lane following in the presence of target vehicles that follow predefined trajectories.
This example modifies the scenario simulation framework of the “Highway Lane Following”
(Automated Driving Toolbox) example by adding functionalities to model and simulate intelligent
target vehicles. The intelligent target vehicles added to this example adapt their trajectories based on
the behavior of the neighboring vehicles and the environment. In response, the lane following system
automatically reacts to ensure that the ego vehicle stays in its lane.

In this example, you achieve system-level simulation through integration with the Unreal Engine®
from Epic Games®. The 3D simulation environment requires a Windows® 64-bit platform.

if ~ispc
 error(['Unreal simulation is only supported on Microsoft', char(174), ' Windows', char(174), '.']);
end

To ensure reproducibility of the simulation results, set the random seed.

rng(0);

In the rest of the example, you will:

1 Explore the test bench model: Explore the functionalities in the system-level test bench model
that you use to assess lane following with intelligent target vehicles.

2 Vehicle behaviors: Explore vehicle behaviors that you can use to model the intelligent target
vehicles.

3 Model the intelligent target vehicles: Model the target vehicles in the scenario for three
different behaviors: velocity keeping, lane following, and lane changing.

4 Simulate lane following with intelligent target vehicles on a straight road: Simulate
velocity keeping, lane following, and lane change behaviors of a target vehicle while testing lane
following on a straight road.

 Highway Lane Following with Intelligent Vehicles

11-99

5 Simulate lane following with intelligent target vehicles on a curved road: Simulate
velocity keeping, lane following, and lane change behaviors of a target vehicle while testing lane
following on a curved road.

6 Test with other scenarios: Test the model with other scenarios available with this example.

Explore Test Bench Model

To explore the test bench model, open a working copy of the project example files. MATLAB® copies
the files to an example folder so that you can edit them.

addpath(fullfile(matlabroot, 'toolbox', 'driving', 'drivingdemos'));
helperDrivingProjectSetup('HLFIntelligentVehicles.zip', 'workDir', pwd);

Open the system-level simulation test bench model for the lane following application.

open_system("HighwayLaneFollowingWithIntelligentVehiclesTestBench")

The test bench model contains these modules:

1 Simulation 3D Scenario: Subsystem that specifies road, ego vehicle, intelligent target vehicles,
camera, and radar sensors used for simulation.

2 Lane Marker Detector: Algorithm model to detect the lane boundaries in the frame captured by
camera sensor.

3 Vehicle Detector: Algorithm model to detect to detect vehicles in the frame captured by camera
sensor.

4 Forward Vehicle Sensor Fusion: Algorithm model that fuses the detections of vehicles in front
of the ego vehicle that were obtained from vision and radar sensors.

5 Lane Following Decision Logic: Algorithm model that specifies lateral, longitudinal decision
logic and provides lane center information and MIO related information to controller.

6 Lane Following Controller: Algorithm model that specifies the controls.

11 Automated Driving Applications

11-100

7 Vehicle Dynamics: Specifies the dynamics model for the ego vehicle.
8 Metrics Assessment: Assesses system-level behavior.

The Lane Marker Detector, Vehicle Detector, Forward Vehicle Sensor Fusion, Lane Following Decision
Logic, Lane Following Controller, Vehicle Dynamics, and Metrics Assessment subsystems are based
on the subsystems used in “Highway Lane Following” (Automated Driving Toolbox) (Automated
Driving Toolbox). If you have license to Simulink® Coder™ and Embedded Coder™, you can generate
deployable-ready embedded real-time code for the Lane Marker Detector, Vehicle Detector, Forward
Vehicle Sensor Fusion, Lane Following Decision Logic, and Lane Following Controller algorithm
models. This example focuses only on the Simulation 3D Scenario subsystem. An Intelligent
Target Vehicles subsystem block is added to the Simulation 3D Scenario subsystem in order to
configure the behavior of target vehicles in the scenario. The Lane Marker Detector, Vehicle Detector,
Forward Vehicle Sensor Fusion, Lane Following Decision Logic, Lane Following Controller, Vehicle
Dynamics, and Metrics Assessment subsystems steer the ego vehicle in response to the behavior of
the target vehicles configured by the Simulation 3D Scenario subsystem.

Open the Simulation 3D Scenario subsystem and highlight the Intelligent Target Vehicles
subsystem.

open_system("HighwayLaneFollowingWithIntelligentVehiclesTestBench/Simulation 3D Scenario")
hilite_system("HighwayLaneFollowingWithIntelligentVehiclesTestBench/Simulation 3D Scenario/Intelligent Target Vehicles")

 Highway Lane Following with Intelligent Vehicles

11-101

11 Automated Driving Applications

11-102

The Simulation 3D Scenario subsystem configures the road network, models the target vehicles,
sets vehicle positions, and synthesizes sensors. The subsystem is initialized by using the
helperSLHighwayLaneFollowingWithIntelligentVehiclesSetup script. This script defines
the driving scenario for testing the highway lane following. This setup script defines the road network
and sets the behavior for each target vehicle in the scenario.

• The Scenario Reader (Automated Driving Toolbox) block reads the roads and actors (ego and
target vehicles) from a scenario file specified using the
helperSLHighwayLaneFollowingWithIntelligentVehiclesSetup script. The block
outputs the poses of target vehicles and the lane boundaries with respect to the coordinate system
of the ego vehicle.

• The Intelligent Target Vehicles is a function-call subsystem block that models the behavior of
the actors in the driving scenario. The initial values for this subsystem block parameters are set by
the helperSLHighwayLaneFollowingWithIntelligentVehiclesSetup script. The Cuboid
To 3D Simulation (Automated Driving Toolbox) and the Simulation 3D Vehicle with Ground
Following (Automated Driving Toolbox) blocks set the actor poses for the 3D simulation
environment.

• The Simulation 3D Scene Configuration (Automated Driving Toolbox) block implements a 3D
simulation environment by using the road network and the actor positions.

This setup script also configures the controller design parameters, vehicle model parameters, and the
Simulink® bus signals required for the
HighwayLaneFollowingWithIntelligentVehiclesTestBench model. This script assigns an
array of structures, targetVehicles, to the base workspace that contains the behavior type for
each target vehicle.

Vehicle Behaviors

This example enables you to use four modes of vehicle behaviors for configuring the target vehicles
using the targetVehicles structure.

• Default: In this mode, the target vehicles in the scenario follow predefined trajectories. The
target vehicles are non-adaptive and are not configured for intelligent behavior.

• VelocityKeeping: In this mode, the target vehicles are configured to travel in a lane at a
constant set velocity. Each target vehicle maintains the set velocity regardless of the presence of a
lead vehicle in its current lane and does not check for collision.

• LaneFollowing: In this mode, the target vehicles are configured to travel in a lane by adapting
their velocities in response to a lead vehicle. If a target vehicle encounters a lead vehicle in its
current lane, the model performs collision checking and adjusts the velocity of the target vehicle.
Collision checking ensures that the target vehicle maintains a safe distance from the lead vehicle.

• LaneChange: In this mode, the target vehicles are configured to travel in a lane at a particular
velocity and follow the lead vehicle. If the target vehicle gets too close to the lead vehicle, then it
performs a lane change. Before changing the lane, the model checks for potential forward and
side collisions and adapts the velocity of the target vehicle to maintain a safe distance from other
vehicles in the scenario.

Model Intelligent Target Vehicles

The Intelligent Target Vehicles subsystem dynamically updates the vehicle poses for all the target
vehicles based on their predefined vehicle behavior. As mentioned already, the
helperSLHighwayLaneFollowingWithIntelligentVehiclesSetup script defines the scenario
and the behavior for each target vehicle in the scenario. The setup script stores the vehicle behavior

 Highway Lane Following with Intelligent Vehicles

11-103

and other attributes as an array of structures, targetVehicles, to the base workspace. The
structure stores these attributes:

• ActorID
• Position
• Velocity
• Roll
• Pitch
• Yaw
• AngularVelocity
• InitialLaneID
• BehaviorType

The Intelligent Target Vehicles subsystem uses a mask to load the configuration in
targetVehicles from the base workspace. You can set the values of these attributes to modify the
position, orientation, velocities, and behavior of target vehicles. Open the Intelligent Target
Vehicles subsystem.

open_system("HighwayLaneFollowingWithIntelligentVehiclesTestBench/Simulation 3D Scenario/Intelligent Target Vehicles")

The Vehicle To World (Automated Driving Toolbox) block converts the predefined actor (ego and
target vehicle) poses and trajectories from ego-vehicle coordinates to world coordinates. The Target
Vehicle Behavior subsystem block computes the next state of the target vehicles by using
predefined target vehicles poses, ego-vehicle pose, and current state of target vehicles. The
subsystem outputs the target vehicles poses in world coordinates for navigating the vehicles in the
3D simulation environment.

Open the Target Vehicle Behavior subsystem.

open_system("HighwayLaneFollowingWithIntelligentVehiclesTestBench/Simulation 3D Scenario/Intelligent Target Vehicles/Target Vehicle Behavior",'tab')

11 Automated Driving Applications

11-104

The Target Vehicle Behavior subsystem enables you to switch between the default and other
vehicle behaviors. If the behavior type for a target vehicle is set to Default, the subsystem
configures the target vehicles to follow predefined trajectories. Otherwise, the position of the vehicle
is dynamically computed and updated using the Intelligent Vehicle subsystem block. The
Intelligent Vehicle subsystem block configures the VelocityKeeping, LaneFollowing, and
LaneChange behaviors for the target vehicles.

Open Intelligent Vehicle subsystem.

open_system("HighwayLaneFollowingWithIntelligentVehiclesTestBench/Simulation 3D Scenario/Intelligent Target Vehicles/Target Vehicle Behavior/Intelligent Vehicle")

 Highway Lane Following with Intelligent Vehicles

11-105

The Intelligent Vehicle subsystem computes the pose of a target vehicle by using information about
the neighboring vehicles and the vehicle behavior. The subsystem is similar to the Lane Change
Planner component of the “Highway Lane Change” (Automated Driving Toolbox) example. The
Intelligent Vehicle subsystem has these blocks:

• The Environment Updater block computes the lead and rear vehicle information, current lane
number, and existence of adjacent lanes (NoLeftLane, NoRightLane) with respect to the current
state of the target vehicle. This block is configured by the System object™
HelperEnvironmentUpdater.

• The Velocity Keeping Sampler block defines terminal states required for the VelocityKeeping
behavior. This block reads the set velocity from the mask parameter
norm(TargetVehicle.Velocity).

• The Lane Following Sampler block defines terminal states required for the LaneFollowing
behavior. This block reads the set velocity from the mask parameter
norm(TargetVehicle.Velocity).

• The Lane Change Sampler block defines terminal states required for the LaneChange behavior.
This block also defines deviation offset from the reference path to keep the vehicle in a specific
lane after a lane change. This block reads TargetVehicle.Velocity, laneInfo, and
TargetVehicle.InitialLaneID from the base workspace by using mask parameters.

The table shows the configuration of terminal states and parameters for different vehicle behaviors:

11 Automated Driving Applications

11-106

• The Check Collision block checks for collision with any other vehicle in the scenario. The
simulation stops if collision is detected.

• The Pulse Generator block defines the replan period for the Motion Planner subsystem. The
default value is set to 1 second. Replanning can be triggered every pulse period, or if any of the
samplers has a state update, or by the Motion Planner subsystem.

• The MotionPlanner subsystem generates trajectory for a target vehicle by using the terminal
states defined by the vehicle behavior. It uses trajectoryOptimalFrenet (Navigation Toolbox)
from Navigation Toolbox™ to generate a trajectory. The subsystem estimates the position of the
vehicle along its trajectory at every simulation step. This subsystem internally uses the
HelperTrajectoryPlanner System object™ to implement a fallback mechanism for different
vehicle behaviors when the trajectoryOptimalFrenet function is unable to generate a feasible
trajectory.

• If the vehicle behavior is set to LaneChange, the trajectory planner attempts to generate a
trajectory with LaneFollowing behavior. If it is unable to generate a trajectory, then it stops the
vehicle using its stop behavior.

• If the vehicle behavior is set to LaneFollowing or VelocityKeeping, the trajectory planner
stops the vehicle using stop behavior.

The system implements the stop behavior by constructing a trajectory with the previous state of the
vehicle, which results in an immediate stop of the target vehicle.

Simulate Intelligent Target Vehicle Behavior on Straight Road

This example uses a test scenario that has three target vehicles (red sedan, black muscle car, and
orange hatchback) and one ego vehicle (blue sedan) traveling on a straight road with two lanes.

• The red sedan is the first target vehicle and travels in the lane adjacent to the ego lane.
• The orange hatchback is a lead vehicle for the ego vehicle in the ego lane.
• The black muscle car is slow moving and a lead vehicle for the red sedan in the adjacent lane of

the ego vehicle. The figure shows the initial positions of these vehicles.

 Highway Lane Following with Intelligent Vehicles

11-107

You can run the simulation any number of times by changing the behavior type for each vehicle
during each run. This example runs the simulation three times and at each run the behavior type for
the first target vehicle is modified.

Configure All Target Vehicles Behavior to Velocity Keeping and Run Simulation

Run the setup script to configure VelocityKeeping behavior for all target vehicles.

helperSLHighwayLaneFollowingWithIntelligentVehiclesSetup(...
 "scenarioFcnName",...
 "scenario_LFACC_01_Straight_IntelligentVelocityKeeping");

Display the BehaviorType of all the target vehicles.

disp([targetVehicles(:).BehaviorType]');

 VelocityKeeping
 VelocityKeeping
 VelocityKeeping
 Default
 Default

Run the simulation and visualize the results. The target vehicles in the scenario travel in their
respective lanes at a constant velocity. The red sedan and the black muscle car maintain their velocity
and do not check for collisions.

To reduce command-window output, turn off the model predictive control (MPC) update messages.

11 Automated Driving Applications

11-108

mpcverbosity('off');
% Run the model
simout = sim("HighwayLaneFollowingWithIntelligentVehiclesTestBench","StopTime","9");

Plot the velocity profiles of ego and first target vehicle (red sedan) to analyze the results.

hFigVK = helperPlotEgoAndTargetVehicleProfiles(simout.logsout);

Close figure

close(hFigVK);

• The Yaw Angle of Target Vehicle (Red sedan) plot shows the yaw angle of the red sedan. There
is no variation in the yaw angle as the vehicle travels on a straight lane road.

 Highway Lane Following with Intelligent Vehicles

11-109

• The Absolute Velocity of Target Vehicle (Red sedan) plot shows the absolute velocity of the
red sedan. The velocity profile of the vehicle is constant as the vehicle is configured to
VelocityKeeping behavior.

• The Absolute Velocity of Ego Vehicle (Blue sedan) plot shows that there is no effect of the red
sedan on the ego vehicle as both vehicles travel in adjacent lanes.

Configure First Target Vehicle Behavior to Lane Following and Run Simulation

Configure the behavior type for the first target vehicle (red sedan) to perform lane following. Display
the updated values for the BehaviorType of target vehicles.

targetVehicles(1).BehaviorType = VehicleBehavior.LaneFollowing;
disp([targetVehicles(:).BehaviorType]');

 LaneFollowing
 VelocityKeeping
 VelocityKeeping
 Default
 Default

Run the simulation and visualize the results. The target vehicles in the scenario are traveling in their
respective lanes. The first target vehicle (red sedan) slows down to avoid colliding with the slow-
moving black muscle car in its lane.

sim("HighwayLaneFollowingWithIntelligentVehiclesTestBench");

Plot the velocity profiles of the ego and first target vehicle (red sedan) to analyze the results.

hFigLF = helperPlotEgoAndTargetVehicleProfiles(logsout);

11 Automated Driving Applications

11-110

Close figure

close(hFigLF);

• The Yaw Angle of Target Vehicle (Red sedan) plot is the same as the one obtained in the
previous simulation. There is no variation in the yaw angle as the vehicle travels on a straight lane
road.

• The Absolute Velocity of Target Vehicle (Red sedan) plot diverges from the previous
simulation. The velocity of the red sedan gradually decreases from 13 m/s to 5 m/s to avoid
colliding with the black muscle car and maintains a safety gap.

• The Absolute Velocity of Ego Vehicle (Blue sedan) plot is same as the one in the previous
simulation. The ego vehicle is not affected by the change in the behavior of the red sedan.

Configure First Target Vehicle Behavior to Lane Changing and Run Simulation

 Highway Lane Following with Intelligent Vehicles

11-111

targetVehicles(1).BehaviorType = VehicleBehavior.LaneChange;

Display the BehaviorType of all the target vehicles.

disp([targetVehicles(:).BehaviorType]');

 LaneChange
 VelocityKeeping
 VelocityKeeping
 Default
 Default

Run the simulation and visualize the results. The orange hatchback and black muscle car are
traveling at constant velocity in their respective lanes. The first target vehicle (red sedan) performs a
lane change as it gets close to the black muscle car. It also does another lane change when it gets
close to the orange hatchback.

sim("HighwayLaneFollowingWithIntelligentVehiclesTestBench");

Plot the velocity profiles of the ego and the first target vehicle (red sedan) to analyze the results.

hFigLC = helperPlotEgoAndTargetVehicleProfiles(logsout);

11 Automated Driving Applications

11-112

Close figure

close(hFigLC);

• The Yaw Angle of Target Vehicle (Red sedan) plot diverges from the previous simulation
results. The yaw angle profile of the first target vehicle shows deviations as the vehicle performs a
lane change.

• The Absolute Velocity of Target Vehicle (Red sedan) plot is similar to the VelocityKeeping
behavior. The red sedan maintains a constant velocity even during the lane change.

• The Absolute Velocity of Ego Vehicle (Blue sedan) plot shows the ego vehicle response to the
lane change maneuver by the first target vehicle (red sedan). The velocity of the ego vehicle
decreases as the red sedan changes lanes. The red sedan moves to the ego lane and travels in
front of the ego vehicle. The ego vehicle reacts by decreasing its velocity in order to travel in the
same lane. Close all the figures.

 Highway Lane Following with Intelligent Vehicles

11-113

Simulate Intelligent Target Vehicle Behavior on Curved Road

Test the model on a scenario with curved roads. The vehicle configuration and position of vehicles are
similar to the previous simulation. The test scenario contains a curved road and the first target
vehicle (Red sedan) is configured to LaneChange behavior. The other two target vehicles are
configured to VelocityKeeping behavior. The figure below shows the initial positions of the
vehicles in the curved road scene.

Run the setup script to configure the model parameters.

helperSLHighwayLaneFollowingWithIntelligentVehiclesSetup(...
 "scenarioFcnName",...
 "scenario_LFACC_04_Curved_IntelligentLaneChange");

Run simulation and visualize the results. Plot the yaw angle and velocity profiles of ego and target
vehicles.

sim("HighwayLaneFollowingWithIntelligentVehiclesTestBench");
hFigCurvedLC = helperPlotEgoAndTargetVehicleProfiles(logsout);

11 Automated Driving Applications

11-114

• The Yaw Angle of Target Vehicle (Red sedan) plot shows variation in the profile as the red
sedan performs lane change on a curved road. The curvature of the road also impacts the yaw
angle of the target vehicle.

• The Absolute Velocity of Target Vehicle (Red sedan) plot is similar to the VelocityKeeping
behavior, as the red sedan maintains a constant velocity during lane change on a curved road.

• The Absolute Velocity of Ego Vehicle (Blue sedan) plot shows the response of the ego vehicle
to the lane change maneuver by the red sedan. The ego vehicle reacts by decreasing its velocity in
order to travel in the same lane.

Close the figure.

close(hFigCurvedLC);

 Highway Lane Following with Intelligent Vehicles

11-115

Explore Other Scenarios

This example provides additional scenarios that are compatible with the
HighwayLaneFollowingWithIntelligentVehiclesTestBench model. Below is a list of
compatible scenarios that are provided with this example.

• scenario_LFACC_01_Straight_IntelligentVelocityKeeping function configures the test
scenario such that all the target vehicles are configured to perform VelocityKeeping behavior
on a straight road.

• scenario_LFACC_02_Straight_IntelligentLaneFollowing function configures the test
scenario such that the red sedan performs LaneFollowing behavior while all other target
vehicles perform VelocityKeeping behavior on a straight road.

• scenario_LFACC_03_Straight_IntelligentLaneChange function configures the test
scenario such that the red sedan performs LaneChange behavior while all other target vehicles
perform VelocityKeeping behavior on a straight road.

• scenario_LFACC_04_Curved_IntelligentLaneChange function configures the test scenario
such that the red sedan performs LaneChange behavior while all other target vehicles perform
VelocityKeeping behavior on a curved road. This is configured as the default scenario.

• scenario_LFACC_05_Curved_IntelligentDoubleLaneChange function configures the test
scenario such that the red sedan performs LaneChange behavior while all other target vehicles
perform VelocityKeeping behavior on a curved road. The placement of other vehicles in this
scenario is such that the red sedan performs a double lane change during the simulation.

For more details on the road and target vehicle configurations in each scenario, view the comments in
each file. You can configure the Simulink model and workspace to simulate these scenarios using the
helperSLHighwayLaneFollowingWithIntelligentVehiclesSetup function.

helperSLHighwayLaneFollowingWithIntelligentVehiclesSetup("scenarioFcnName","scenario_LFACC_05_Curved_IntelligentDoubleLaneChange");

Conclusion

This example demonstrates how to test the functionality of a lane following application in a scenario
with an ego vehicle and multiple intelligent target vehicles.

Enable the MPC update messages again.

mpcverbosity('on');

See Also

More About
• “Highway Lane Following” on page 11-62
• “Automate Testing for Highway Lane Following” on page 11-89
• “Automated Driving Using Model Predictive Control” on page 11-2

11 Automated Driving Applications

11-116

Parking Valet Using Nonlinear Model Predictive Control
This example shows how to generate a reference trajectory and track the trajectory for a parking
valet using nonlinear model predictive control (NLMPC).

Parking Garage

In this example, the parking garage contains an ego vehicle and eight static obstacles. The obstacles
are given by six parked vehicles, a reserved parking area, and the garage border. The goal of the ego
vehicle is to park at a target pose without colliding with any of the obstacles. The reference point of
the ego pose is located at the center of the rear axle.

Define the parameters of the ego vehicle.

vdims = vehicleDimensions;
egoWheelbase = vdims.Wheelbase;
distToCenter = 0.5*egoWheelbase;

Specify the initial ego vehicle pose.

% Ego initial pose: x(m), y(m) and yaw angle (rad)
egoInitialPose = [4,12,0];

Define the target pose for the ego vehicle. In this example, there are two possible parking directions.
To park facing north, set parkNorth to true. To park facing south, set parkNorth to false.

parkNorth = true;
if parkNorth
 egoTargetPose = [36,45,pi/2];
else
 egoTargetPose = [27.2,4.7,-pi/2];
end

The helperSLCreateCostmap function creates a static map of the parking lot that contains
information about stationary obstacles, road markings, and parked cars. For more details, see the
“Automated Parking Valet in Simulink” (Automated Driving Toolbox) example.

costmap = helperSLCreateCostmap();
centerToFront = distToCenter;
centerToRear = distToCenter;
helperSLCreateUtilityBus;
costmapStruct = helperSLCreateUtilityStruct(costmap);

Visualize the parking environment. Use a sample time of 0.1 for the visualizer.

Tv = 0.1;
helperSLVisualizeParkingValet(egoInitialPose, 0, costmapStruct);

 Parking Valet Using Nonlinear Model Predictive Control

11-117

The six parked vehicles are orange boxes on the top and bottom of the figure. The middle area
represents the reserved parking area. The left border of the garage is also modeled as a static
obstacle. The ego vehicle in blue has two axles and four wheels. The two green boxes represent the
target parking spots for the ego vehicle, with the top spot facing north.

Generate a Trajectory Using Nonlinear Model Predictive Controller

In this example, a kinematic bicycle model with front steering angle is used. The motion of the ego
vehicle can be described by the following equations.

ẋ = v ⋅ cos(ψ)
ẏ = v ⋅ sin(ψ)

ψ̇ = v
b ⋅ tan(δ)

where x, y denotes the position of the vehicle and ψ denotes the yaw angle of the vehicle. The
parameter b represents the wheelbase of the vehicle. (x, y, ψ) are the state variables of the vehicle
state functions. The speed v and steering angle δ are the control variables of the vehicle state
functions.

The parking valet trajectory from the NLMPC controller for is designed based on the analysis similar
to “Parallel Parking Using Nonlinear Model Predictive Control” on page 11-126 example. The design
of controller is implemented in the createMPCForParkingValet script.

11 Automated Driving Applications

11-118

• The speed of the ego vehicle is constrained to be within [-6.5,6.5] m/s (approximately with speed
limit as 15 mph) and the steering angle of the ego vehicle is constrained to be within [-45,45]
degrees.

• The cost function for nlmpc controller object is a custom cost function defined in a manner similar
to a quadratic tracking cost plus a terminal cost. In the following custom cost function, s(t)
denotes the states of ego vehicle at time t, d represents the duration of simulation. sref is given by
the target pose for the ego vehicle. The matrices Qp, Rp, Qt, and Rt are constant.

J =∫0 d
(s(t)− sref)TQp(s(t)− sref) + u(t)TRpu(t)dt + (s(d)− sref)TQt(s(d)− sref) + u(d)TRtu(d)

• To avoid collision with obstacles, the NLMPC controller must satisfy the following inequality
constraints, where minimum distance to all obstacles distmin must be greater than a safe distance
distsafe. In this example, the ego vehicle and obstacles are modeled as collisionBox (Robotics
System Toolbox) objects and the distance from the ego vehicle to obstacles is computed by the
checkCollision (Robotics System Toolbox) function.

distmin ≥ distsafe

• The initial guess for the solution path is given by two straight lines. The first line is from the initial
ego vehicle pose to a middle point, and the second line is from the middle point to the ego vehicle
target pose.

Select a middle point for the initial solution path guess.

if parkNorth
 midPoint = [4,34,pi/2];
else
 midPoint = [27,12,0];
end

Configure the parameters of the NLMPC controller. To plan an optimal trajectory over the entire
prediction horizon, set the control horizon equal to the prediction horizon.

% Sample time
Ts = 0.1;
% Prediction horizon
p = 100;
% Control horizon
c = 100;
% Weight matrices for terminal cost
Qt = 0.5*diag([10 5 20]);
Rt = 0.1*diag([1 2]);
% Weight matrices for tracking cost
if parkNorth
 Qp = 1e-6*diag([2 2 0]);
 Rp = 1e-4*diag([1 15]);
else
 Qp = 0*diag([2 2 0]);
 Rp = 1e-2*diag([1 5]);
end
% Safety distance to obstacles (m)
safetyDistance = 0.1;
% Maximum iteration number
maxIter = 70;

 Parking Valet Using Nonlinear Model Predictive Control

11-119

% Disable message display
mpcverbosity('off');

Create the NLMPC controller using the specified parameters.

[nlobj,opt,paras] = createMPCForParkingValet(p,c,Ts,egoInitialPose,egoTargetPose,...
 maxIter,Qp,Rp,Qt,Rt,distToCenter,safetyDistance,midPoint);

Set the initial conditions for the ego vehicle.

x0 = egoInitialPose';
u0 = [0;0];

Generate the reference trajectory using the nlmpcmove function.

tic;
[mv,nloptions,info] = nlmpcmove(nlobj,x0,u0,[],[],opt);
timeVal = toc;

Obtain the reference trajectories for the states (xRef) and the control actions (uRef), which are the
optimal trajectories computed of the prediction horizon.

xRef = info.Xopt;
uRef = info.MVopt;

Analyze the planned trajectory.

analyzeParkingValetResults(nlobj,info,egoTargetPose,Qp,Rp,Qt,Rt,...
 distToCenter,safetyDistance,timeVal)

Summary of results:
1) Valid results. No collisions.
2) Minimum distance to obstacles = 0.1184 (Valid when greater than safety distance 0.1000)
3) Optimization exit flag = 1 (Successful when positive)
4) Elapsed time (s) for nlmpcmove = 84.2429
5) Final states error in x (m), y (m) and theta (deg): 0.0018, 0.0023, 0.0050
6) Final control inputs speed (m/s) and steering angle (deg): 0.0212, -0.3379

As shown in the following plots, the planned trajectory successfully parks the ego vehicle in the
target pose. The final control input values are close to zero.

plotTrajectoryParkingValet(xRef,uRef)

11 Automated Driving Applications

11-120

 Parking Valet Using Nonlinear Model Predictive Control

11-121

Track Reference Trajectory in Simulink Model

Design an NLMPC controller to track the reference trajectory.

First, set the simulation duration and update the reference trajectory based on the duration.

Duration = 12;
Tsteps = Duration/Ts;
Xref = [xRef(2:p+1,:);repmat(xRef(end,:),Tsteps-p,1)];

Create an NLMPC controller with a tracking prediction horizon (pTracking) of 10.

pTracking = 10;
nlobjTracking = createMPCForTrackingParkingValet(pTracking,Xref);

Open the Simulink model.

mdl = 'mpcAutoParkingValet';
open_system(mdl)

11 Automated Driving Applications

11-122

Close the animation plots before running the simulation.

f = findobj('Name','Automated Parking Valet');
close(f)

Simulate the model.

sim(mdl)

 Parking Valet Using Nonlinear Model Predictive Control

11-123

ans =
 Simulink.SimulationOutput:

 tout: [125x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

The animation shows that the ego vehicle parks at the target pose successfully without any obstacle
collisions. You can also view the ego vehicle and pose trajectories using the Ego Vehicle Pose and
Controls scopes.

Conclusion

This example shows how to generate a reference trajectory and track the trajectory for parking valet
using nonlinear model predictive control. The controller navigates the ego vehicle to the target
parking spot without colliding with any obstacles.

mpcverbosity('on');
bdclose(mdl)

11 Automated Driving Applications

11-124

f = findobj('Name','Automated Parking Valet');
close(f)

See Also
Functions
nlmpc | nlmpcmove

Blocks
Nonlinear MPC Controller

More About
• “Automated Driving Using Model Predictive Control” on page 11-2

 Parking Valet Using Nonlinear Model Predictive Control

11-125

Parallel Parking Using Nonlinear Model Predictive Control
This example shows how to design a parallel parking controller using nonlinear model predictive
control (NLMPC).

Parking Environment

In this example, the parking environment contains an ego vehicle and six static obstacles. The
obstacles include four parked vehicles, the road curbside, and a yellow line on the road. The goal of
the ego vehicle is to park at a target pose without colliding with any of the obstacles. The reference
point for the ego vehicle pose is located at the center of rear axle.

The ego vehicle has two axles and four wheels. Define the ego vehicle parameters.

vdims = vehicleDimensions;
egoWheelbase = vdims.Wheelbase;
distToCenter = 0.5*egoWheelbase;

The ego vehicle starts at the following initial pose.

• X position of 7 m
• Y position of 3.1 m
• Yaw angle 0 rad

egoInitialPose = [7,3.1,0];

To park the center of the ego vehicle at the target location (X = 0, Y = 0) use the following target
pose, which specifies the location of the rear-axle reference point.

• X position equal to half the wheelbase length in the negative X direction
• Y position of 0 m
• Yaw angle 0 rad

egoTargetPose = [-distToCenter,0,0];

Visualize the parking environment. Specify a visualizer sample time of 0.1 s.

Tv = 0.1;
helperSLVisualizeParking(egoInitialPose,0);

11 Automated Driving Applications

11-126

In the visualization, the four parked vehicles are the orange boxes in the middle. The bottom orange
boundary is the road curbside and the top orange boundary is the yellow line on the road.

Ego Vehicle Model

For parking problems, the vehicle travels at low speeds. This example uses a kinematic bicycle model
with front steering angle for the vehicle parking problem. The motion of the ego vehicle can be
described using the following equations.

ẋ = v ⋅ cos(ψ)
ẏ = v ⋅ sin(ψ)

ψ̇ = v
b ⋅ tan(δ)

Here, x, y denotes the position of the vehicle and ψ denotes the yaw angle of the vehicle. The
parameter b represents the wheelbase of the vehicle. (x, y, ψ) are the state variables for the vehicle
state functions. The speed v and steering angle δ are the control variables for the vehicle state
functions. The vehicle state functions are implemented in parkingVehicleStateFcn.

Design Nonlinear Model Predictive Controller

The nonlinear model predictive controller for parking is designed based on the following analysis.

• The output of the vehicle state function is the same as the state of the vehicle (x, y, ψ). Therefore,
the NLMPC controller object is created with three states, three outputs, and two manipulated
variables.

• The speed of the ego vehicle is constrained to be between -2 and 2 m/s, and the steering angle of
the ego vehicle is constrained to be between -45 and 45 degrees.

• The NLMPC controller uses a custom cost function, which is defined in a manner similar to a
quadratic tracking cost plus a terminal cost. In the following custom cost function, s(t) denotes the
states of ego vehicle at time t, d represents the duration of simulation, and sref is the target pose
of the ego vehicle. The weight matrices Qp, Rp, Qt, and Rt are constant.

J =∫0 d
(s(t)− sref)TQp(s(t)− sref) + u(t)TRpu(t)dt + (s(d)− sref)TQt(s(d)− sref) + u(d)TRtu(d)

 Parallel Parking Using Nonlinear Model Predictive Control

11-127

• To avoid collisions with obstacles, the NLMPC controller must satisfy the following inequality
constraints where the minimum distance to all obstacles distmin must be greater than a safe
distance distsafe. In this example, the ego vehicle and obstacles are modeled as collisionBox
(Robotics System Toolbox) objects and the distance from ego vehicle to obstacles is computed
using checkCollision (Robotics System Toolbox).

distmin ≥ distsafe

• To improve the simulation efficiency, the Jacobians of the state function, cost function, and
inequality constraints are all provided to the NLMPC controller. The Jacobians of the inequality
constraints are approximated based on [1].

• The initial guesses for the state solutions are defined by straight lines between the initial and
target poses of the ego vehicle.

Specify the sample time (Ts), prediction horizon (p), and control horizon (m) for the nonlinear MPC
controller.

Ts = 0.1;
p = 70;
c = 70;

Specify constant weight matrices for the controller. Define both the tracking weight matrices (Qp and
Rp) and the terminal weight matrices (Qt and Rt).

Qp = diag([0.1 0.1 0]);
Rp = 0.01*eye(2);
Qt = diag([1 5 100]);
Rt = 0.1*eye(2);

Specify the safety distance of 0.1 m, which the controller uses when defining its constraints.

safetyDistance = 0.1;

Specify the maximum number of iterations for the NLMPC solver.

maxIter = 40;

Create the nonlinear MPC controller. For clarity, first disable the MPC command-window messages.

mpcverbosity('off');

Create the nlmpc controller object with three states, three outputs, and two inputs.

nx = 3;
ny = 3;
nu = 2;
nlobj = nlmpc(nx,ny,nu);

Specify the sample time (Ts), prediction horizon (PredictionHorizon), and control horizon
(ControlHorizon) for the controller.

nlobj.Ts = Ts;
nlobj.PredictionHorizon = p;
nlobj.ControlHorizon = c;

Define constraints for the manipulated variables. Here, MV(1) is the ego vehicle speed in m/s, and
MV(2) is the steering angle in radians.

11 Automated Driving Applications

11-128

nlobj.MV(1).Min = -2;
nlobj.MV(1).Max = 2;
nlobj.MV(2).Min = -pi/4;
nlobj.MV(2).Max = pi/4;

Specify the controller state function and the state-function Jacobian.

nlobj.Model.StateFcn = "parkingVehicleStateFcn";
nlobj.Jacobian.StateFcn = "parkingVehicleStateJacobianFcn";

Specify the controller cost function and the cost-function Jacobian.

nlobj.Optimization.CustomCostFcn = "parkingCostFcn";
nlobj.Optimization.ReplaceStandardCost = true;
nlobj.Jacobian.CustomCostFcn = "parkingCostJacobian";

Define custom inequality constraints for the controller and the constraint Jacobian. The custom
constraint function computes the distance form the ego vehicle to all the obstacles in the environment
and compares these distances to the safe distance.

nlobj.Optimization.CustomIneqConFcn = "parkingIneqConFcn";
nlobj.Jacobian.CustomIneqConFcn = "parkingIneqConFcnJacobian";

Configure the optimization solver of the controller.

nlobj.Optimization.SolverOptions.FunctionTolerance = 0.01;
nlobj.Optimization.SolverOptions.StepTolerance = 0.01;
nlobj.Optimization.SolverOptions.ConstraintTolerance = 0.01;
nlobj.Optimization.SolverOptions.OptimalityTolerance = 0.01;
nlobj.Optimization.SolverOptions.MaxIter = maxIter;

Define an initial guess for the optimal state solution. This initial guess is the straight line from the
starting pose to the target pose. Also, specify the values for the ego vehicle parameters in the
nlmpcmoveopt object.

opt = nlmpcmoveopt;
opt.X0 = [linspace(egoInitialPose(1),egoTargetPose(1),p)', ...
 linspace(egoInitialPose(2),egoInitialPose(2),p)'...
 zeros(p,1)];
opt.MV0 = zeros(p,nu);

Computing the cost function and inequality constraints, along with their Jacobians, requires passing
parameters to the custom functions. Define the parameter vector and specify the number of
parameters. Also, specify the parameter values in the nlmpcmoveopt object.

paras = {egoTargetPose,Qp,Rp,Qt,Rt,distToCenter,safetyDistance}';
nlobj.Model.NumberOfParameters = numel(paras);
opt.Parameters = paras;

Simulate Controller in MATLAB

To simulate an NLMPC controller in MATLAB®, you can use one of the following options:

• Simulate the controller using the nlmpcmove function.
• Build a MEX file for the controller using the buildMEX function. Evaluating this MEX file

improves the simulation efficiency compared to nlmpcmove.

 Parallel Parking Using Nonlinear Model Predictive Control

11-129

Simulate the NLMPC controller for parking using the runParkingAndPlot script. For this
simulation, do not build a MEX file (set useMEX to 0).

useMex = 0;
runParkingAndPlot

11 Automated Driving Applications

11-130

Summary of results:
1) Valid results. No collisions.
2) Minimum distance to obstacles = 0.1782 (Valid when greater than safety distance 0.1000)
3) Optimization exit flag = 1 (Successful when positive)
4) Elapsed time (s) for nlmpcmove = 29.7581
5) Final states error in x (m), y (m) and theta (deg): -0.0087, 0.0294, 0.1698
6) Final control inputs speed (m/s) and steering angle (deg): -0.0006, -0.0180

The ego vehicle parks in the target pose successfully. The final control input values are close to zero.
In the animation and the ego vehicle does not collide with any obstacles at any time.

Build a MEX file for your controller and rerun the simulation.

useMex = 1;
runParkingAndPlot

Generating MEX function "parkingMex" from nonlinear MPC to speed up simulation.
Code generation successful.

MEX function "parkingMex" successfully generated.

 Parallel Parking Using Nonlinear Model Predictive Control

11-131

11 Automated Driving Applications

11-132

Summary of results:
1) Valid results. No collisions.
2) Minimum distance to obstacles = 0.1274 (Valid when greater than safety distance 0.1000)
3) Optimization exit flag = 0 (Successful when positive)
4) Elapsed time (s) for nlmpcmove = 6.2446
5) Final states error in x (m), y (m) and theta (deg): -0.0042, 0.0195, 0.2166
6) Final control inputs speed (m/s) and steering angle (deg): -0.0284, -1.8098

The simulation using the MEX file produces similar results and is significantly faster than the
simulation using nlmpcmove.

Simulate Controller in Simulink

To simulate the NLMPC controller in Simulink ®, use the Nonlinear MPC Controller block. For this
example, to simulate the ego vehicle, use the Vehicle Body 3DOF Lateral block, which is a Bicycle
Model (Automated Driving Toolbox) block.

Specify the simulation duration and open the Simulink model.

Duration = p*Ts;
mdl = 'mpcVDAutoParking';
open_system(mdl)

 Parallel Parking Using Nonlinear Model Predictive Control

11-133

To pass the ego vehicle parameters to the controller, you must create a parameter bus object.

createParameterBus(nlobj,[mdl '/Nonlinear MPC Controller'],'parasBusObject',paras);

Close the animation plot before simulating the model.

f = findobj('Name','Automated Parallel Parking');
close(f)

Simulate the model.

sim(mdl)

11 Automated Driving Applications

11-134

ans =
 Simulink.SimulationOutput:

 tout: [2164x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

Examine the Ego Vehicle Pose and Controls scopes.

open_system([mdl '/Ego Vehicle Model/Ego Vehicle Pose'])
open_system([mdl '/Controls'])

 Parallel Parking Using Nonlinear Model Predictive Control

11-135

11 Automated Driving Applications

11-136

The simulation results are similar to the MATLAB simulation. The ego vehicle has parked at the
target pose successfully without collisions with any obstacles.

Conclusion

This example shows how to design a nonlinear MPC controller for parallel parking. The controller
navigates the ego vehicle to the target parking spot without colliding with any obstacles.

% Enable message display
mpcverbosity('on');
% Close Simulink model
bdclose(mdl)
% Close animation plots
f = findobj('Name','Automated Parallel Parking');
close(f)

References

[1] Schulman, John, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Bradlow, Jia Pan, Sachin
Patil, Ken Goldberg, and Pieter Abbeel. ‘Motion Planning with Sequential Convex Optimization and

 Parallel Parking Using Nonlinear Model Predictive Control

11-137

Convex Collision Checking’. The International Journal of Robotics Research 33, no. 9 (August 2014):
1251–70. https://doi.org/10.1177/0278364914528132.

See Also
Functions
nlmpc | nlmpcmove

Blocks
Nonlinear MPC Controller

More About
• “Automated Driving Using Model Predictive Control” on page 11-2

11 Automated Driving Applications

11-138

https://doi.org/10.1177/0278364914528132

Parallel Parking Using RRT Planner and MPC Tracking
Controller

This example shows how to parallel park an ego car by generating a path using the RRT star planner
and tracking the trajectory using nonlinear model predictive control (NLMPC).

Parking Environment

In this example, the parking environment contains an ego vehicle and six static obstacles. The
obstacles include four parked vehicles, the road curbside, and a yellow line on the road. The goal of
the ego vehicle is to park at a target pose without colliding with any of the obstacles. The reference
point for the ego vehicle pose is located at the center of rear axle.

The ego vehicle has two axles and four wheels. Define the ego vehicle parameters.

vdims = vehicleDimensions;
egoWheelbase = vdims.Wheelbase;
distToCenter = 0.5*egoWheelbase;

The ego vehicle starts at the following initial pose.

• X position of 7 m
• Y position of 3.1 m
• Yaw angle 0 rad

egoInitialPose = [7,3.1,0];

To park the center of the ego vehicle at the target location (X = 0, Y = 0) use the following target
pose, which specifies the location of the rear-axle reference point.

• X position equal to half the wheelbase length
• Y position of 0 m
• Yaw angle 0 rad

egoTargetPose = [-distToCenter,0,0];

Visualize the parking environment. Specify a visualizer sample time of 0.1 s.

Tv = 0.1;
helperSLVisualizeParking(egoInitialPose,0);

 Parallel Parking Using RRT Planner and MPC Tracking Controller

11-139

In the visualization, the four parked vehicles are the orange boxes in the middle. The bottom orange
boundary is the road curbside and the top orange boundary is the yellow line on the road.

Ego Vehicle Model

For parking problems, the vehicle travels at low speeds. This example uses a kinematic bicycle model
with front steering angle for the vehicle parking problem. The motion of the ego vehicle can be
described using the following equations.

ẋ = v ⋅ cos(ψ)
ẏ = v ⋅ sin(ψ)

ψ̇ = v
b ⋅ tan(δ)

Here, x, y denotes the position of the vehicle and ψ denotes the yaw angle of the vehicle. The
parameter b represents the wheelbase of the vehicle. (x, y, ψ) are the state variables for the vehicle
state functions. The speed v and steering angle δ are the control variables for the vehicle state
functions. The vehicle state functions are implemented in parkingVehicleStateFcnRRT.

Path Planning from RRT Star

Configure the state space for the planner. In this example, the state of the ego vehicle is a three-
element vector, [x y theta], with the xy coordinates in meters and angle of rotation in radians.

xlim = [-10 10];
ylim = [-2 6];
yawlim = [-3.1416 3.1416];
bounds = [xlim;ylim;yawlim];
stateSpace = stateSpaceReedsShepp(bounds);
stateSpace.MinTurningRadius = 7;

Create a custom state validator. The planner requires a customized state validator to enable collision
checking between the ego vehicle and obstacles.

stateValidator = parkingStateValidator(stateSpace);

Configure the path planner. Use plannerRRTStar as the planner and specify the state space and
state validator. Specify additional parameters for the planner.

11 Automated Driving Applications

11-140

planner = plannerRRTStar(stateSpace,stateValidator);
planner.MaxConnectionDistance = 4;
planner.ContinueAfterGoalReached = true;
planner.MaxIterations = 2000;

Plan a path from the initial pose to the target pose using the configured path planner. Set the random
number seed for repeatability.

rng(9, 'twister');
[pathObj,solnInfo] = plan(planner,egoInitialPose,egoTargetPose);

Plot the tree expansion on the parking environment.

f = findobj('Name','Automated Parallel Parking');
ax = gca(f);
hold(ax, 'on');
plot(ax,solnInfo.TreeData(:,1),solnInfo.TreeData(:,2),'y.-'); % tree expansion

Generate a trajectory from pathObj by interpolating with an appropriate number of points.

p = 100;
pathObj.interpolate(p+1);
xRef = pathObj.States;

Draw the path on the environment.

plot(ax,xRef(:,1), xRef(:,2),'b-','LineWidth',2)

Design Nonlinear MPC Tracking Controller

Create the nonlinear MPC controller. For clarity, first disable the MPC command-window messages.

mpcverbosity('off');

Create the nlmpc controller object with three states, three outputs, and two inputs.

nlobjTracking = nlmpc(3,3,2);

Specify the sample time (Ts), prediction horizon (PredictionHorizon), and control horizon
(ControlHorizon) for the controller.

 Parallel Parking Using RRT Planner and MPC Tracking Controller

11-141

Ts = 0.1;
pTracking = 10;
nlobjTracking.Ts = Ts;
nlobjTracking.PredictionHorizon = pTracking;
nlobjTracking.ControlHorizon = pTracking;

Define constraints for the manipulated variables. Here, MV(1) is the ego vehicle speed in m/s, and
MV(2) is the steering angle in radians.

nlobjTracking.MV(1).Min = -2;
nlobjTracking.MV(1).Max = 2;
nlobjTracking.MV(2).Min = -pi/6;
nlobjTracking.MV(2).Max = pi/6;

Specify tuning weights for the controller.

nlobjTracking.Weights.OutputVariables = [1,1,3];
nlobjTracking.Weights.ManipulatedVariablesRate = [0.1,0.2];

The motion of ego vehicle is governed by a kinematic bicycle model. Specify the controller state
function and the state-function Jacobian.

nlobjTracking.Model.StateFcn = "parkingVehicleStateFcnRRT";
nlobjTracking.Jacobian.StateFcn = "parkingVehicleStateJacobianFcnRRT";

Specify terminal constraints on control inputs. Both speed and steering angle are expected to be zero
at the end.

nlobjTracking.Optimization.CustomEqConFcn = "parkingTerminalConFcn";

Validate the controller design.

validateFcns(nlobjTracking,randn(3,1),randn(2,1));

Model.StateFcn is OK.
Jacobian.StateFcn is OK.
No output function specified. Assuming "y = x" in the prediction model.
Optimization.CustomEqConFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

Run Closed-loop Simulation in MATLAB

To speed up simulation, first generate a MEX function for the NLMPC controller.

Specify the initial ego vehicle state.

x = egoInitialPose';

Specify the initial control inputs.

u = [0;0];

Obtain code generation data for the NLMPC controller.

[coredata,onlinedata] = getCodeGenerationData(nlobjTracking,x,u);

Build a MEX function for simulating the controller.

mexfcn = buildMEX(nlobjTracking,'parkingRRTMex',coredata,onlinedata);

11 Automated Driving Applications

11-142

Generating MEX function "parkingRRTMex" from nonlinear MPC to speed up simulation.
Code generation successful.

MEX function "parkingRRTMex" successfully generated.

Initialize data before running simulation.

xTrackHistory = x;
uTrackHistory = u;
mv = u;
Duration = 14;
Tsteps = Duration/Ts;
Xref = [xRef(2:p+1,:);repmat(xRef(end,:),Tsteps-p,1)];

Run the closed-loop simulation in MATLAB using the MEX function.

for ct = 1:Tsteps
 % States
 xk = x;
 % Compute optimal control moves with MEX function
 onlinedata.ref = Xref(ct:min(ct+pTracking-1,Tsteps),:);
 [mv,onlinedata,info] = mexfcn(xk,mv,onlinedata);
 % Implement first optimal control move and update plant states.
 ODEFUN = @(t,xk) parkingVehicleStateFcnRRT(xk,mv);
 [TOUT,YOUT] = ode45(ODEFUN,[0 Ts], xk);
 x = YOUT(end,:)';
 % Save plant states for display.
 xTrackHistory = [xTrackHistory x]; %#ok<*AGROW>
 uTrackHistory = [uTrackHistory mv];
end

Plot and animate the simulation results when using the NLMPC controller. The tracking results match
the reference trajectory from the path planner.

plotAndAnimateParkingRRT(p,xRef,xTrackHistory,uTrackHistory);

 Parallel Parking Using RRT Planner and MPC Tracking Controller

11-143

11 Automated Driving Applications

11-144

Tracking error infinity norm in x (m), y (m) and theta (deg): 0.0538, 0.0538, 1.3432
Final control inputs of speed (m/s) and steering angle (deg): 0.0001, 0.0981

Run Closed-loop Simulation in Simulink

To simulate the NLMPC controller in Simulink ®, use the Nonlinear MPC Controller block. For this
example, to simulate the ego vehicle, use the Vehicle Body 3DOF Lateral block, which is a Bicycle
Model (Automated Driving Toolbox) block.

mdl = 'mpcVDAutoParkingRRT';
open_system(mdl)

 Parallel Parking Using RRT Planner and MPC Tracking Controller

11-145

Close the animation plot before simulating the model.

f = findobj('Name','Automated Parallel Parking');
close(f)

Simulate the model.

sim(mdl)

ans =
 Simulink.SimulationOutput:

 tout: [7661x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

11 Automated Driving Applications

11-146

Examine the Ego Vehicle Pose and Controls scopes. The simulation results are similar to the MATLAB
simulation. The ego vehicle has parked at the target pose successfully without collisions with any
obstacles.

Conclusion

This example shows how to how to parallel park an ego car by generating a path using an RRT star
planner and tracking the trajectory using a nonlinear MPC controller. The controller navigates the
ego vehicle to the target parking spot without colliding with any obstacles.

% Enable message display
mpcverbosity('on');
% Close Simulink model
bdclose(mdl)
% Close animation plots
f = findobj('Name','Automated Parallel Parking');
close(f)

See Also
Functions
nlmpc | nlmpcmove

Blocks
Nonlinear MPC Controller

More About
• “Automated Driving Using Model Predictive Control” on page 11-2

 Parallel Parking Using RRT Planner and MPC Tracking Controller

11-147

Traffic Light Negotiation
This example shows how to design and test decision logic for negotiating a traffic light at an
intersection.

Introduction

Decision logic for negotiating traffic lights is a fundamental component of an automated driving
application. The decision logic must react to inputs like the state of the traffic light and surrounding
vehicles. The decision logic then provides the controller with the desired velocity and path. Since
traffic light intersections are dangerous to test, simulating such driving scenarios can provide insight
into the interactions of the decision logic and the controller.

This example shows how to design and test the decision logic for negotiating a traffic light. The
decision logic in this example reacts to the state of the traffic light, distance to the traffic light, and
distance to the closest vehicle ahead. In this example, you will:

1 Explore the test bench model: The model contains the traffic light sensors and environment,
traffic light decision logic, controls, and vehicle dynamics.

2 Model the traffic light decision logic: The traffic light decision logic arbitrates between a lead
vehicle and an upcoming traffic light. It also provides a reference path for the ego vehicle to
follow at an intersection in the absence of lanes.

3 Simulate a left turn with traffic light and a lead vehicle: The model is configured to test the
interactions between the traffic light decision logic and controls of the ego vehicle, while
approaching an intersection in the presence of a lead vehicle.

4 Simulate a left turn with traffic light and cross traffic: The model is configured to test the
interactions between the traffic light decision logic and controls of the ego vehicle when there is
cross traffic at the intersection.

5 Explore other scenarios: These scenarios test the system under additional conditions.

You can apply the modeling patterns used in this example to test your own decision logic and controls
to negotiate traffic lights.

Explore Test Bench Model

To explore the test bench model, open a working copy of the project example files. MATLAB® copies
the files to an example folder so that you can edit them.

addpath(fullfile(matlabroot, 'toolbox', 'driving', 'drivingdemos'));
helperDrivingProjectSetup('TrafficLightNegotiation.zip', 'workDir', pwd);

To explore the behavior of the traffic light negotiation system, open the simulation test bench model
for the system.

open_system("TrafficLightNegotiationTestBench");

11 Automated Driving Applications

11-148

Opening this model runs the helperSLTrafficLightNegotiationSetup script that initializes the
road scenario using the drivingScenario object in the base workspace. It runs the default test
scenario, scenario_02_TLN_left_turn_with_cross_over_vehicle, that contains an ego
vehicle and two other vehicles. This setup script also configures the controller design parameters,
vehicle model parameters, and Simulink® bus signals required for defining the inputs and outputs for
the TrafficLightNegotiationTestBench model.

The test bench model contains the following subsystems:

1 Sensors and Environment: Models the traffic light sensor, road network, vehicles, and the
camera and radar sensors used for simulation.

2 Traffic Light Decision Logic: Arbitrates between the traffic light and other lead vehicles or
cross-over vehicles at the intersection.

3 Lane-Following Controller: Generates longitudinal and lateral controls.
4 Vehicle Dynamics: Models the ego vehicle using a Bicycle Model (Automated Driving Toolbox)

block and updates its state using commands received from the Lane Following Controller
subsystem.

5 Visualization: Plots the world coordinate view of the road network, vehicles, and the traffic light
state during simulation.

The Lane Following Controller reference model and the Vehicle Dynamics subsystem are reused
from the “Highway Lane Following” (Automated Driving Toolbox) example. This example focuses on
the Sensors and Environment and Traffic Light Decision Logic subsystems.

The Sensors and Environment subsystem configures the road network, defines target vehicle
trajectories, and synthesizes sensors. Open the Sensors and Environment subsystem.

open_system("TrafficLightNegotiationTestBench/Sensors and Environment");

 Traffic Light Negotiation

11-149

The scenario and sensors on the ego vehicle are specified by the following parts of the subsystem:

• The Scenario Reader (Automated Driving Toolbox) block is configured to take in ego vehicle
information to perform a closed-loop simulation. It outputs ground truth information of lanes and
actors in ego vehicle coordinates. This block reads the drivingScenario object variable,
scenario, from the base workspace, which contains a road network compatible with the
TrafficLightNegotiationTestBench model.

Plot the road network provided by the scenario.

hFigScenario = figure('Position', [1 1 800 600]);
plot(scenario, 'Parent', axes(hFigScenario));

11 Automated Driving Applications

11-150

This default scenario has one intersection with an ego vehicle, one lead vehicle, and one cross-traffic
vehicle.

Close the figure.

close(hFigScenario);

The Tracking and Sensor Fusion subsystem fuses vehicle detections from Driving Radar Data
Generator (Automated Driving Toolbox) and Vision Detection Generator (Automated Driving Toolbox)
blocks by using a Multi-Object Tracker (Automated Driving Toolbox) block to provide object tracks
surrounding the ego vehicle.

The Vision Detection Generator block also provides lane detections with respect to the ego vehicle
that helps in identifying vehicles present in the ego lane.

The Traffic Light Sensor subsystem simulates the traffic lights. It is configured to support four
traffic light sensors at the intersection, TL Sensor 1, TL Sensor 2, TL Sensor 3, and TL Sensor 4.

Plot the scenario with traffic light sensors.

hFigScenario = helperPlotScenarioWithTrafficLights();

 Traffic Light Negotiation

11-151

Observe that this is the same scenario as before, only with traffic light sensors added. These sensors
are represented by red circles at the intersection, indicating red traffic lights. The labels for the
traffic lights 1, 2, 3, 4 correspond to TL Sensor 1, TL Sensor 2, TL Sensor 3, and TL Sensor 4,
respectively.

Close the figure.

close(hFigScenario);

The test scenarios in TrafficLightNegotiationTestBench are configured such that the ego
vehicle negotiates with TL Sensor 1. There are three modes in which you can configure this Traffic
Light Sensor subsystem:

1 Steady Red: TL Sensor 1 and TL Sensor 3 are always in a red state. The other two traffic
lights are always in a green state.

2 Steady Green: TL Sensor 1 and TL Sensor 3 are always in a green state. The other two traffic
lights are always in a red state.

11 Automated Driving Applications

11-152

3 Cycle [Default]: TL Sensor 1 and TL Sensor 3 follow a cyclic pattern: green-yellow-red with
predefined timings. Other traffic lights also follow a cyclic pattern: red-green-yellow with
predefined timings to complement the TL Sensor 1 and TL Sensor 3.

You can configure this subsystem in one of these modes by using the Traffic Light Sensor Mode
mask parameter.

Open the Traffic Light Sensor subsystem.

open_system('TrafficLightNegotiationTestBench/Sensors and Environment/Traffic Light Sensor', 'force');

The Traffic Light Switching Logic Stateflow® chart implements the traffic light state change logic
for the four traffic light sensors. The initial state for all the traffic lights is set to red. Transition to a
different mode is based on a trigger condition defined by distance of the ego vehicle to the TL
Sensor 1 traffic light. This distance is defined by the variable distanceToTrafficLight. Traffic
light transition is triggered if this distance is less than trafficLightStateTriggerThreshold.
This threshold is currently set to 60 meters and can be changed in the
helperSLTrafficLightNegotiationSetup script.

The Compute Distance To Traffic Light block calculates distanceToTrafficLight using the traffic
light position of TL Sensor 1, defined by the variable trafficLightPosition. This is obtained
from the Traffic Light Position mask parameter of the Traffic Light Sensor subsystem. The
value of the mask parameter is set to intersectionInfo.tlSensor1Position, a variable set in
the base workspace by the helperSLTrafficLightNegotiationSetup script.
intersectionInfo structure is an output from the helperGetTrafficLightScene function. This
function is used to create the test scenarios that are compatible with the
TrafficLightNegotiationTestBench model.

The following inputs are needed by the traffic light decision logic and controller to implement their
functionalities:

• ReferencePathInfo provides a predefined reference trajectory that can be used by the ego
vehicle for navigation in absence of lane information. The ego vehicle can go straight, take a left
turn, or a right turn at the intersection based on the reference path. This reference path is
obtained using referencePathInfo, an output from helperGetTrafficLightScene. This
function takes an input argument to specify the direction of travel at the intersection. The possible
values are: Straight, Left, and Right.

 Traffic Light Negotiation

11-153

• IntersectionCenter provides the position of the intersection center of the road network in the
scenario. This is obtained using the intersectionInfo, an output from
helperGetTrafficLightScene.

• Set Velocity defines the user-set velocity for the controller.

Model Traffic Light Decision Logic

The Traffic Light Decision Logic reference model arbitrates between the lead car and the traffic
light. It also calculates the lane center information as required by the controller either using the
detected lanes or a predefined path. Open the Traffic Light Decision Logic reference model.

open_system("TrafficLightDecisionLogic");

The Find Lead Car subsystem finds the lead car in the current lane from input object tracks. It
provides relative distance, relativeDistToLeadCar, and relative velocity,
relativeVelocityOfLeadCar, with respect to the lead vehicle. If there is no lead vehicle, then this
block considers the lead vehicle to be present at infinite distance.

The Arbitration Logic Stateflow chart uses the lead car information and implements the logic
required to arbitrate between the traffic light and the lead vehicle at the intersection. Open the
Arbitration Logic Stateflow chart.

open_system("TrafficLightDecisionLogic/Arbitration Logic");

11 Automated Driving Applications

11-154

The Arbitration Logic Stateflow chart consists of two states, OnEntry and
OnRedAndYellowLightDetection. If the traffic light state is green or if there are no traffic light
detections, the state remains in the OnEntry state. If the traffic light state is red or yellow, then the
state transitions to the OnRedAndYellowLightDetection state. The control flow switches between
these states based on trafficLightDetection and distanceToTrafficLight variables. In each
state, relative distance and relative velocity with respect to the most important object (MIO) are
calculated. The lead vehicle and the red traffic light are considered as MIOs.

OnEntry:

relativeDistance = relativeDistToLeadCar;

relativeVelocity = relativeVelocityOfLeadCar;

OnRedAndYellowLightDetection:

relativeDistance = min(relativeDistToLeadCar,distanceToTrafficLight);

relativeVelocity = min(relativeVelocityOfLeadCar,longitudinalVelocity);

The longitudinalVelocity represents the longitudinal velocity of the ego vehicle.

The Compute Distance To Intersection block computes the distance to the intersection center from
the current ego position. Because the intersection has no lanes, the ego vehicle uses this distance to
fall back to the predefined reference path at the intersection.

The Lane Center Decision Logic subsystem calculates the lane center information as required by
the Path Following Control System. Open the Lane Center Decision Logic subsystem.

open_system("TrafficLightDecisionLogic/Lane Center Decision Logic");

 Traffic Light Negotiation

11-155

The Lane Center Decision Logic subsystem primarily relies on the lane detections from the Vision
Detection Generator (Automated Driving Toolbox) block to estimate lane center information like
curvature, curvature derivative, lateral offset, and heading angle. However, there are no lane
markings to detect at the intersection. In such cases, the lane center information can be estimated
from a predefined reference path.

The Reference Path Lane Center subsystem computes lane center information based on the
current ego pose and predefined reference path. A switch is configured to use
LaneCenterFromReferencePath when DistanceToIntersection is less than
referencePathSwitchThreshold. This threshold is currently set to 20 meters and can be changed
in the helperSLTrafficLightNegotiationSetup script.

Simulate Left Turn with Traffic Light and Lead Vehicle

In this test scenario, a lead vehicle travels in the ego lane and crosses the intersection. The traffic
light state keeps green for the lead vehicle and turns red for the ego vehicle. The ego vehicle is
expected to follow the lead vehicle, negotiate the traffic light, and make a left turn.

Configure the TrafficLightNegotiationTestBench model to use the
scenario_03_TLN_left_turn_with_lead_vehicle scenario.

helperSLTrafficLightNegotiationSetup("scenario_03_TLN_left_turn_with_lead_vehicle");
% To reduce command-window output, first turn off the MPC update messages.
mpcverbosity('off');
% Simulate the model.
sim("TrafficLightNegotiationTestBench");

11 Automated Driving Applications

11-156

Plot the simulation results.

hFigResults = helperPlotTrafficLightNegotiationResults(logsout);

 Traffic Light Negotiation

11-157

Examine the results.

• The Traffic light state - TL Sensor 1 plot shows the traffic light sensor states of TL Sensor 1. It
changes from green to yellow, then from yellow to red, and then repeats in Cycle mode.

• The Relative longitudinal distance plot shows the relative distance between the ego vehicle
and the MIO. Notice that the ego vehicle follows the lead vehicle from 0 to 4.2 seconds by
maintaining a safe distance from it. You can also observe that from 4.2 to 9 seconds, this distance
reduces because the red traffic light is detected as an MIO. Also notice the gaps representing
infinite distance when there is no MIO after the lead vehicle exceeds the maximum distance
allowed for an MIO.

• The Ego acceleration plot shows the acceleration profile from the Lane Following Controller.
Notice the negative acceleration from 4.2 to 4.7 seconds, in reaction to the detection of the red
traffic light as an MIO. You can also observe the increase in acceleration after 9 seconds, in
response to the green traffic light.

11 Automated Driving Applications

11-158

• The Ego yaw angle plot shows the yaw angle profile of the ego vehicle. Notice the variation in
this profile after 12 seconds, in response to the ego vehicle taking a left turn.

Close the figure.

close(hFigResults);

Simulate Left Turn with Traffic Light and Cross Traffic

This test scenario is an extension to the previous scenario. In addition to the previous conditions, in
this scenario, a slow-moving cross-traffic vehicle is in the intersection when the traffic light is green
for the ego vehicle. The ego vehicle is expected to wait for the cross-traffic vehicle to pass the
intersection before taking the left turn.

Configure the TrafficLightNegotiationTestBench model to use the
scenario_02_TLN_left_turn_with_cross_over_vehicle scenario.

helperSLTrafficLightNegotiationSetup("scenario_02_TLN_left_turn_with_cross_over_vehicle");

% Simulate the model.
sim("TrafficLightNegotiationTestBench");

 Traffic Light Negotiation

11-159

Plot the simulation results.

hFigResults = helperPlotTrafficLightNegotiationResults(logsout);

Examine the results.

• The Traffic light state - TL Sensor 1 plot is same as the one from the previous simulation.
• The Relative longitudinal distance plot diverges from the previous simulation run from 10.5

seconds onward. Notice the detection of the cross-traffic vehicle as the MIO at 10 seconds at
around 10 meters.

• The Ego acceleration plot also quickly responds to the cross-traffic vehicle at 10.6. You can
notice a hard-braking profile in response to the cross-traffic vehicle at the intersection.

• The Ego yaw angle plot shows that the ego vehicle initiates a left turn after 14 seconds, in
response to the cross-traffic vehicle leaving the intersection.

Close the figure.

11 Automated Driving Applications

11-160

close(hFigResults);

Explore Other Scenarios

In the previous sections, you explored the system behavior for the
scenario_03_TLN_left_turn_with_lead_vehicle and
scenario_02_TLN_left_turn_with_cross_over_vehicle scenarios. Below is a list of
scenarios that are compatible with TrafficLightNegotiationTestBench.

 scenario_01_TLN_left_turn
 scenario_02_TLN_left_turn_with_cross_over_vehicle [Default]
 scenario_03_TLN_left_turn_with_lead_vehicle
 scenario_04_TLN_straight
 scenario_05_TLN_straight_with_lead_vehicle

Use these additional scenarios to analyze TrafficLightNegotiationTestBench under different
conditions. For example, while learning about the interactions between the traffic light decision logic
and controls, it can be helpful to begin with a scenario that has an intersection with a traffic light but
no vehicles. To configure the model and workspace for such a scenario, use this code:

helperSLTrafficLightNegotiationSetup("scenario_04_TLN_straight");

Enable the MPC update messages.

mpcverbosity('on');

Conclusion

In this example, you implemented decision logic for traffic light negotiation and tested it with a lane
following controller in a closed-loop Simulink model.

See Also

More About
• “Traffic Light Negotiation with Unreal Engine Visualization” on page 11-162
• “Automated Driving Using Model Predictive Control” on page 11-2

 Traffic Light Negotiation

11-161

Traffic Light Negotiation with Unreal Engine Visualization
This example shows how to design and simulate a vehicle to negotiate traffic lights in the Unreal
Engine® driving simulation environment.

Introduction

Decision logic for negotiating traffic lights is a fundamental component of automated driving
applications. The decision logic interacts with a controller to steer the ego vehicle based on the state
of the traffic light and other vehicles in the ego lane. Simulating real-world traffic scenarios with
realistic conditions can provide more insight into the interactions between the decision logic and the
controller. Automated Driving Toolbox™ provides a 3D simulation environment powered by Unreal
Engine® from Epic Games®. You can use this engine to visualize the motion of a vehicle in a prebuilt
3D scene. This engine provides an intuitive way to analyze the performance of decision logic and
control algorithms when negotiating a traffic light at an intersection.

For information on how to design the decision logic and controls for negotiating traffic lights in a
cuboid environment, see the “Traffic Light Negotiation” (Automated Driving Toolbox) example. This
example shows how to control a traffic light in an Unreal scene and then how to simulate and
visualize vehicle behavior for different test scenarios. In this example, you will:

1 Explore the architecture of the test bench model: The model contains sensors and
environment, traffic light decision logic, controls, and vehicle dynamics.

2 Control traffic light in an Unreal scene: The Simulation 3D Traffic Light Controller
helper block configures the model to control the state of a traffic light in an Unreal scene by
using Simulink®.

3 Simulate vehicle behavior during green to red transition: The model analyzes the
interactions between the decision logic and the controller when the traffic light state transitions
from green to red and the ego vehicle is at a distance of 10 meters from the stop line.

4 Simulate vehicle behavior during red to green transition: The model analyzes the
interactions between the decision logic and the controller when the traffic light transitions from
red to green and the ego vehicle is at a distance of 11 meters from stop line. In this case, the ego
vehicle also negotiates traffic light as another vehicle crosses the intersection.

5 Explore other scenarios: These scenarios test the system under additional conditions.

You can apply the modeling patterns used in this example to test your own decision logic and controls
to negotiate traffic lights in an Unreal scene.

In this example, you enable system-level simulation through integration with the Unreal Engine. This
environment requires a Windows® 64-bit platform.

if ~ispc
 error(['3D Simulation is only supported on Microsoft', char(174), ' Windows', char(174), '.']);
end

Explore Architecture of Test Bench Model

To explore the test bench model, copy the project example files to a working folder. Use workDir
argument of the helperDrivingProjectSetup function to specify the file path. The length of file
path must be less than 25 characters to avoid maximum character limit for Windows file path.

addpath(fullfile(matlabroot, 'toolbox', 'driving', 'drivingdemos'));
helperDrivingProjectSetup('TLNUnreal.zip', 'workDir', pwd);

11 Automated Driving Applications

11-162

To explore the behavior of the traffic light negotiation system, open the simulation test bench model
for the system.

open_system("TrafficLightNegotiationWithUnrealTestBench");

Opening this model runs the helperSLTrafficLightNegotiationWithUnrealSetup script to
initialize the test scenario stored as a drivingScenario (Automated Driving Toolbox) object in the
base workspace. The default test scenario,
scenario_03_TLN_straight_greenToRed_with_lead_vehicle, contains one ego vehicle and
two non-ego vehicles. This setup script also configures the controller design parameters, vehicle
model parameters, and Simulink® bus signals to define the inputs and outputs for the
TrafficLightNegotiationWithUnrealTestBench model.

The test bench model contains the following subsystems:

1 Sensors and Environment: Models the road network, vehicles, camera, and radar sensors used
for simulation. The subsystem uses the Simulation 3D Traffic Light Controller helper
block to control the state of traffic lights in an Unreal scene.

2 Traffic Light Decision Logic: Arbitrates between the traffic light and other lead vehicles or
cross-traffic vehicles at the intersection.

3 Lane-Following Controller: Generates longitudinal and lateral controls for the ego vehicle.
4 Vehicle Dynamics: Models the ego vehicle using a Bicycle Model (Automated Driving Toolbox)

block and updates its state using commands received from the Lane Following Controller
reference model.

The Traffic Light Decision Logic, Lane Following Controller reference models, and Vehicle
Dynamics subsystem are reused from the “Traffic Light Negotiation” (Automated Driving Toolbox)
example. This example modifies the Sensors and Environment subsystem to make it compatible for
simulation with an Unreal scene.

The Sensors and Environment subsystem configures the road network, sets vehicle positions,
synthesizes sensors, and fuses the vehicle detections from the radar and vision sensors. Open the
Sensors and Environment subsystem.

 Traffic Light Negotiation with Unreal Engine Visualization

11-163

open_system("TrafficLightNegotiationWithUnrealTestBench/Sensors and Environment");

Select Scenario

The scene and road network required for the test bench model are specified by the following parts of
this subsystem:

• The scene name parameter Scene name of the Simulation 3D Scene Configuration (Automated
Driving Toolbox) block is set to US City Block (Automated Driving Toolbox). The US city block road
network consists of fifteen one-way intersections with two traffic lights at each intersection. This
example uses a section of the US city block scene to test the model.

• The Scenario Reader (Automated Driving Toolbox) block takes the ego vehicle information as input
and performs a closed-loop simulation. This block reads the drivingScenario object scenario
from the base workspace. The scenario contains the desired road network. The road network
closely matches with a section of the US city block scene and contains one intersection.

You can display the selected section of the US city block scene by using the
helperDisplayTrafficLightScene function.

Specify the x and the y limits to select the desired scene area and plot the extracted scene.

xlimit = [-110 70];
ylimit = [-105 105];
hFigure = helperDisplayTrafficLightScene(xlimit, ylimit);
snapnow;
close(hFigure);

11 Automated Driving Applications

11-164

The helperGetTrafficLightScenario function specifies a reference path for the ego vehicle to
follow when the lane information is not available. The Reference Path Info block reads the
reference path stored in the base workspace variable referencePathInfo. The ego vehicle can
either go straight or take a left turn at the intersection based on the reference trajectory. You can
select one of these reference trajectories by setting the input values of
helperGetTrafficLightScenario function. Set the value to

• Straight - To make the ego vehicle travel straight through the intersection.

• Left - To make the ego vehicle take a left turn at the intersection.

The Set Velocity block reads the velocity value from the base workspace variable setVelocity and
gives as input to the controller.

 Traffic Light Negotiation with Unreal Engine Visualization

11-165

Set Vehicle Positions

The scenario contains one ego vehicle and two non-ego vehicles. The positions for each vehicle in the
scenario are specified by these parts of the subsystem:

• The Simulation 3D Vehicle with Ground Following (Automated Driving Toolbox) block provides an
interface that changes the position and orientation of the vehicle in the 3D scene.

• The Ego input port controls the position of the ego vehicle, which is specified by the Simulation
3D Vehicle with Ground Following 1 block. The ActorName mask parameter of Simulation
3D Vehicle with Ground Following 1 block is specified as EgoVehicle.

• The Cuboid To 3D Simulation (Automated Driving Toolbox) block converts the ego pose coordinate
system (with respect to below the center of the vehicle rear axle) to the 3D simulation coordinate
system (with respect to below the vehicle center).

• The Scenario Reader (Automated Driving Toolbox) block also outputs ground truth information of
lanes and actor poses in ego vehicle coordinates for the target vehicles. There are two target
vehicles in this example, which are specified by the other Simulation 3D Vehicle with Ground
Following blocks.

• The Vehicle To World (Automated Driving Toolbox) block converts the actor pose coordinates from
ego vehicle coordinates to the world coordinates.

The Tracking and Sensor Fusion subsystem fuses vehicle detections from Driving Radar Data
Generator (Automated Driving Toolbox) and Vision Detection Generator (Automated Driving Toolbox)
blocks and tracks the fused detections using Multi-Object Tracker (Automated Driving Toolbox) block
to provide object tracks surrounding the ego vehicle. The Vision Detection Generator block also
provides lane detections with respect to the ego vehicle that helps in identifying vehicles present in
the ego lane.

Control Traffic Light in Unreal Scene

This model uses the Simulation 3D Traffic Light Controller helper block to configure and control
the state of traffic lights in an Unreal scene. The Simulation 3D Traffic Light Controller helper
block controls the state of traffic lights by using Timer-Based or State-Based mode. You can
select the desired mode by using the Control mode mask parameter. By default, this model uses
State-Based mode. For information on Timer-Based mode, see the block mask description.

In State-Based mode, the block overwrites the state of a traffic light specified by the Traffic
Light ID input port. The value for the Traffic Light ID input port is set by the
intersectionInfo.trafficLightToNegotiate variable in the
helperGetTrafficLightScenario function. In this model, the value for Traffic Light ID input
port is set to 16. This implies that the block controls the traffic light with ID value 16 in the US city
block scene. The states of all the traffic lights present in the US city block scene is returned by the
Ground Truth output port of the Simulation 3D Traffic Light Controller helper block. The
model tests the decision logic and controls by using the ground truth information and does not
require perception-based traffic light detection.

The Traffic Light Select block extracts the state of the traffic light with ID value 16 from the
Ground Truth output. The Traffic Light Decision Logic reference model uses the state value to
arbitrate between the lead car and the traffic light. For more information about the Traffic Light
Decision Logic reference model, see the “Traffic Light Negotiation” (Automated Driving Toolbox)
example.

11 Automated Driving Applications

11-166

The Traffic Light Stop Line Position block provides the stop line position at the intersection
corresponding to the selected traffic light trafficLightToNegotiate. The stop line position value
is specified by intersectionInfo.tlStopLinePosition.

The Intersection Center block provides the position of the intersection center of the road network
in the scenario. This is obtained using the intersectionInfo, an output from
helperGetTrafficLightScenario.

It is often important to test the decision logic and controls when the ego vehicle is close to the traffic
light and the traffic light changes its state. The model used in this example enables traffic lights to
change state when the EgoVehicle is close to the traffic light.

The Distance To Traffic Light Stop Line block calculates the Euclidean distance between the
stop line corresponding to the selected traffic light trafficLightToNegotiate and the current ego
vehicle position.

The Traffic Light Decision Logic uses the distance value to decide the most important object
(MIO), the closest object in front of the ego vehicle. It can be the lead vehicle or traffic light in the
ego lane.

The Traffic Light Switching Logic block outputs tlState, the state of the traffic light that needs
to be set. This is implemented using Stateflow® and uses the distance value to trigger a state change
when the EgoVehicle is closer to the traffic light than the specified distance.

Open the Traffic Light Switching Logic block.

open_system("TrafficLightNegotiationWithUnrealTestBench/Sensors and Environment/Traffic Light Switching Logic", 'force');

Traffic Light Switching Logic uses the Configuration params mask parameter to read the
traffic light configuration, trafficLightConfig, from the base workspace. You can use the

 Traffic Light Negotiation with Unreal Engine Visualization

11-167

trafficLightConfig structure to configure different test scenarios. This structure is defined in the
test scenario function and has the following fields: stateChangeDistance, initialState, and
changeState.

• initialState specifies the state of the traffic light before the state change.

• stateChangeDistance specifies the threshold distance of the EgoVehicle to the traffic light at
which state change should happen.

• changeState specifies the state of the traffic light to be set after state change.

State switching happens based on the set configuration and when EgoVehicle reaches
stateChangeDistance. When the initialState is Red and changeState is Green the Stateflow
chart switches from Red state to Green state. Conversely, when the initialState is Green and
changeState is Red the Stateflow chart is modeled such that the state transition happens from
Green state to Yellow state and after one second, the traffic light switches to Red state.

Simulate Vehicle Behavior During Green To Red Transition

This section tests the decision logic when the ego vehicle is at a close distance to the traffic light and
the traffic light state changes from green to red. In this test scenario, a lead vehicle travels in the ego
lane and crosses the intersection. The traffic light state keeps green for the lead vehicle and turns red
when the ego vehicle is at a distance of 10 meters from the stop line. The ego vehicle is expected to
follow the lead vehicle, negotiate the state transition, and come to a complete halt before the stop
line.

Configure the TrafficLightNegotiationWithUnrealTestBench model to use the
scenario_03_TLN_straight_greenToRed_with_lead_vehicle test scenario.

helperSLTrafficLightNegotiationWithUnrealSetup(...
 "scenario_03_TLN_straight_greenToRed_with_lead_vehicle");

Display the trafficLightConfig structure parameters set for the test scenario.

disp(trafficLightConfig');

 initialState: 2
 stateChangeDistance: 10
 changeState: 0

Simulate the model. During the simulation, the model logs the signals required for post simulation
analysis to logsout.

To reduce command-window output, first turn off the MPC update messages.

mpcverbosity('off');
sim("TrafficLightNegotiationWithUnrealTestBench");

Plot the simulation results using helperPlotTrafficLightControlAndNegotiationResults
function.

hFigResults = helperPlotTrafficLightControlAndNegotiationResults(logsout, trafficLightConfig.stateChangeDistance);

11 Automated Driving Applications

11-168

Examine the results.

• The Traffic light state plot shows the state of the traffic light. The Distance to traffic light
stop line plot shows the distance between the ego vehicle and the stop line corresponding to the
traffic light. You can see that the initial state of the traffic light is green and the state changes
from green to yellow as the ego vehicle approaches the stop line. The state changes from yellow to
red when the ego vehicle is at a distance of 10 meters from the stop line.

• The Relative longitudinal distance plot shows the relative distance between the ego vehicle
and the most important object (MIO). The MIO is the closest object in front of the ego vehicle. It
can be a lead vehicle or a traffic light in the ego lane. The ego vehicle follows the lead vehicle and
maintains a safe distance when the traffic light state is green. The distance between the ego and
the lead vehicle decreases when the traffic light transitions from green to red. This is because, as
the ego vehicle approaches the stop line, the traffic light is detected as an MIO. At this point of
time, the traffic light state is either red or yellow.

 Traffic Light Negotiation with Unreal Engine Visualization

11-169

• The Ego acceleration plot shows the acceleration profile from the Lane Following Controller.
Notice that this closely follows the dip in the relative distance, in reaction to the detection of the
red traffic light as an MIO.

• The Ego velocity plot shows the velocity profile of the ego vehicle. Notice that the ego velocity
slows down in reaction to the yellow and red traffic lights and comes to a complete halt before the
stop line. This can be verified by comparing the plot with Distance to traffic light stop line,
when the velocity is zero.

You can refer to the “Traffic Light Negotiation” (Automated Driving Toolbox) example to learn more
about this analysis and the interactions between the decision logic and the controller.

Close the figure.

close(hFigResults);

Simulate Vehicle Behavior During Red To Green Transition

This section tests the decision logic when the ego vehicle is at a close distance to the traffic light and
the traffic light state changes from red to green. In addition, a cross-traffic vehicle is in the
intersection when the traffic light is green for the ego vehicle. The traffic light state is initially red for
the ego vehicle and turns green when the ego vehicle is at a distance of 11 meters from the stop line.
The ego vehicle is expected to slow down as it approaches the traffic light when the state is red and
must start accelerating when the traffic light state changes from red to green. It is also expected to
wait for the cross-traffic vehicle to pass the intersection before accelerating to continue its travel.

The test scenario function scenario_04_TLN_straight_redToGreen_with_cross_vehicle
implements this scenario. Configure the TrafficLightNegotiationWithUnrealTestBench
model to use this scenario.

helperSLTrafficLightNegotiationWithUnrealSetup(...
 "scenario_04_TLN_straight_redToGreen_with_cross_vehicle");

Display the trafficLightConfig structure parameters that are set for this test scenario.

disp(trafficLightConfig');

 initialState: 0
 stateChangeDistance: 11
 changeState: 2

Simulate the model.

sim("TrafficLightNegotiationWithUnrealTestBench");

Plot the simulation results.

hFigResults = helperPlotTrafficLightControlAndNegotiationResults(logsout, trafficLightConfig.stateChangeDistance);

11 Automated Driving Applications

11-170

Examine the results.

• The Traffic light state plot shows that the initial traffic light state is red. The traffic light state
changes from red to green when the ego vehicle is at a distance of 11 meters from the stop line.

• The Relative longitudinal distance plot closely follows the Distance to traffic light stop line
plot because there is no lead vehicle. Notice the sudden dip in the relative distance in response to
the detection of the cross-over vehicle.

• The Ego acceleration plot shows that the ego vehicle attempts to slow down on seeing the red
traffic light. However, in response to the state change to green, you can observe an increase in
acceleration. You can then notice a hard-braking profile in response to the cross-traffic vehicle at
the intersection.

• The Ego velocity plot closely follows the Ego acceleration plot and shows a decrease in velocity
as the ego vehicle approaches the intersection. You can also notice a slight increase in velocity in

 Traffic Light Negotiation with Unreal Engine Visualization

11-171

response to green traffic light and subsequent decrease in velocity in response to the cross-traffic
vehicle.

Close the figure.

close(hFigResults);

Explore Other Scenarios

In the previous sections, you explored the system behavior for the
scenario_03_TLN_straight_greenToRed_with_lead_vehicle and
scenario_04_TLN_straight_redToGreen_with_cross_vehicle scenarios. Below is a list of
scenarios that are compatible with TrafficLightNegotiationWithUnrealTestBench.

scenario_01_TLN_left_redToGreen_with_lead_vehicle
scenario_02_TLN_straight_greenToRed
scenario_03_TLN_straight_greenToRed_with_lead_vehicle [Default]
scenario_04_TLN_straight_redToGreen_with_cross_vehicle

Use these additional scenarios to analyze TrafficLightNegotiationWithUnrealTestBench
under different conditions.

Enable the MPC update messages.

mpcverbosity('on');

You can use the modeling patterns in this example to build your own traffic light negotiation
application.

See Also

More About
• “Traffic Light Negotiation” on page 11-148
• “Automated Driving Using Model Predictive Control” on page 11-2

11 Automated Driving Applications

11-172

	Controller Creation
	Choose Sample Time and Horizons
	Sample Time
	Prediction Horizon
	Control Horizon
	Defining Sample Time and Horizons

	Specify Constraints
	Input and Output Constraints
	Constraint Softening

	DC Servomotor with Constraint on Unmeasured Output
	Discrete Control Set MPC
	Solve a Discrete Set MPC Problem in MATLAB
	Solve a Discrete Set MPC Problem in Simulink
	Surge Tank Control Using Discrete Control Set MPC
	Specify Scale Factors
	Determine Scale Factors
	Specify Scale Factors at Command Line
	Specify Scale Factors Using MPC Designer

	Using Scale Factors to Facilitate MPC Weights Tuning
	Tune Weights
	Initial Tuning
	Testing and Refinement
	Robustness

	Design Model Predictive Controller at Equilibrium Operating Point
	Design MPC Controller for Plant with Delays
	Design MPC Controller for Nonsquare Plants
	More Outputs Than Manipulated Variables
	More Manipulated Variables Than Outputs

	Design MPC Controller for Identified Plant Model
	Design Controller for Identified Plant Using Apps
	Design Controller for Identified Plant at the Command Line
	Configure Noise Channels as Unmeasured Disturbances

	Generate MATLAB Code from MPC Designer
	Design MPC Controller for Position Servomechanism
	Design MPC Controller for Paper Machine Process
	Control of an Inverted Pendulum on a Cart
	Thermo-Mechanical Pulping Process with Multiple Control Objectives
	MPC Control of an Aircraft with Unstable Poles

	Model Predictive Control Basics
	Controller State Estimation
	Controller State Variables
	State Observer
	State Estimation
	Built-in Steady-State Kalman Gains Calculation
	Output Variable Prediction

	Optimization Problem
	Overview
	Standard Cost Function
	Alternative Cost Function
	Constraints
	QP Matrices
	Unconstrained Model Predictive Control

	QP Solvers
	Built-In QP Solvers
	Custom QP Solver
	Use quadprog as Custom QP Solver
	Integration with FORCESPRO Solver

	Controller Refinement
	Setting Targets for Manipulated Variables
	Constraints on Linear Combinations of Inputs and Outputs
	Use Custom Constraints in Blending Process
	Terminal Weights and Constraints
	Provide LQR Performance Using Terminal Penalty Weights
	Adjust Disturbance and Noise Models
	Overview
	Output Disturbance Model
	Measurement Noise Model
	Input Disturbance Model
	Restrictions
	Disturbance Rejection Tuning

	Custom State Estimation
	Implement Custom State Estimator Equivalent to Built-In Kalman Filter
	Manipulated Variable Blocking
	Specify Blocking Interval Lengths
	Interpolate Block Moves for Nonlinear MPC

	Specifying Alternative Cost Function with Off-Diagonal Weight Matrices

	Controller Analysis
	Review Model Predictive Controller for Stability and Robustness Issues
	Compute Steady-State Gain
	Extract Controller
	Compare Multiple Controller Responses Using MPC Designer
	Adjust Input and Output Weights Based on Sensitivity Analysis
	Understanding Control Behavior by Examining Optimal Control Sequence

	Controller Simulation
	Simulating MPC Controller with Plant Model Mismatch
	Test MPC Controller Robustness using MPC Designer
	Generate Simulink Model from MPC Designer
	Test an Existing MPC Controller with Simulink
	Signal Previewing
	Improving Control Performance with Look-Ahead (Previewing)
	Update Constraints at Run Time
	Update Bounds on Input and Output Signals at Run Time
	Update Mixed Input/Output Constraints at Run Time

	Vary Input and Output Bounds at Run Time
	Tune Weights at Run Time
	Tuning MPC Controller Weights at Run-Time
	Setting Time-Varying Weights and Constraints with MPC Designer
	Time-Varying Weights
	Time-Varying Constraints

	Adjust Horizons at Run Time
	Adjust Horizons in MATLAB
	Adjust Horizons in Simulink
	Code Generation
	Effect on Time-Varying Controller Parameters and Signals

	Evaluate Control Performance Using Run-Time Horizon Adjustment
	Switch Controller Online and Offline with Bumpless Transfer
	Switching Controllers Based on Optimal Costs
	Monitoring Optimization Status to Detect Controller Failures
	Simulate MPC Controller with a Custom QP Solver
	Use Suboptimal Solution in Fast MPC Applications
	Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus Dynamics
	Simulate Linear MPC Controller with Nonlinear Plant using Successive Linearizations
	Nonlinear CSTR Application
	Example Code for Successive Linearization
	CSTR Results and Discussion

	Explicit MPC Design
	Explicit MPC
	Design Workflow for Explicit MPC
	Traditional (Implicit) MPC Design
	Explicit MPC Generation
	Explicit MPC Simplification
	Implementation
	Simulation

	Explicit MPC Control of a Single-Input-Single-Output Plant
	Explicit MPC Control of an Aircraft with Unstable Poles
	Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output
	Explicit MPC Control of an Inverted Pendulum on a Cart

	Adaptive MPC Design
	Adaptive MPC
	When to Use Adaptive MPC
	Plant Model
	Nominal Operating Point
	State Estimation

	Model Updating Strategy
	Overview
	Other Considerations

	Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive Linearization
	Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation
	Adaptive MPC Control of Nonlinear Chemical Reactor Using Linear Parameter-Varying System
	Obstacle Avoidance Using Adaptive Model Predictive Control
	Time-Varying MPC
	When to Use Time-Varying MPC
	Time-Varying Prediction Models
	Time-Varying Nominal Conditions
	State Estimation

	Time-Varying MPC Control of a Time-Varying Plant
	Time-Varying MPC Control of an Inverted Pendulum on a Cart

	Gain Scheduling MPC Design
	Gain-Scheduled MPC
	Design Workflow

	Schedule Controllers at Multiple Operating Points
	Gain-Scheduled MPC Control of Nonlinear Chemical Reactor
	Gain-Scheduled Implicit and Explicit MPC Control of Mass-Spring System
	Gain-Scheduled MPC Control of an Inverted Pendulum on a Cart

	Nonlinear MPC
	Nonlinear MPC
	Generic Nonlinear MPC
	Multistage Nonlinear MPC

	Specify Prediction Model for Nonlinear MPC
	State Function
	Output Function
	Specify Optional Model Parameters
	Augment Prediction Model with Unmeasured Disturbances

	Specify Cost Function for Nonlinear MPC
	Custom Cost Function
	Cost Function Jacobian

	Specify Constraints for Nonlinear MPC
	Standard Linear Constraints
	Custom Constraints
	Custom Constraint Jacobians

	Configure Optimization Solver for Nonlinear MPC
	Solver Decision Variables
	Specify Initial Guesses
	Configure fmincon Options
	Specify Custom Solver

	Trajectory Optimization and Control of Flying Robot Using Nonlinear MPC
	Generate Code to Plan and Execute Collision-Free Trajectories using KINOVA Gen3 Manipulator
	Swing-up Control of a Pendulum Using Nonlinear Model Predictive Control
	Nonlinear Model Predictive Control of an Exothermic Chemical Reactor
	Optimizing Tuberculosis Treatment Using Nonlinear MPC with a Custom Solver
	Nonlinear and Gain-Scheduled MPC Control of an Ethylene Oxidation Plant
	Optimization and Control of a Fed-Batch Reactor Using Nonlinear MPC
	Lane Following Using Nonlinear Model Predictive Control
	Lane Change Assist Using Nonlinear Model Predictive Control
	Control of Quadrotor Using Nonlinear Model Predictive Control
	Economic MPC
	Economic MPC Control of Ethylene Oxide Production
	Truck and Trailer Automatic Parking Using Multistage Nonlinear MPC
	Land a Rocket Using Multistage Nonlinear MPC

	Code Generation
	Generate Code and Deploy Controller to Real-Time Targets
	Code Generation in MATLAB
	Code Generation in Simulink
	Generate CUDA Code for Linear MPC Controllers
	Sampling Rate in Real-Time Environment
	QP Problem Construction for Generated C Code
	Code Generation for Custom QP Solvers

	Generate Code to Compute Optimal MPC Moves in MATLAB
	Simulation and Code Generation Using Simulink Coder
	Simulation and Structured Text Generation Using Simulink PLC Coder
	Use the GPU to Compute MPC Moves in MATLAB
	Use the GPU to Simulate an MPC Controller in Simulink
	Using MPC Controller Block Inside Function-Call and Triggered Subsystems
	Solve Custom MPC Quadratic Programming Problem and Generate Code
	Simulate and Generate Code for MPC Controller with Custom QP Solver
	Real-Time Control with OPC Toolbox
	Implement MPC Controllers using Embotech FORCESPRO Solvers
	Embotech Quadratic Programming (QP) Solver
	Embotech Nonlinear Programming (NLP) Solver

	Automated Driving Applications
	Automated Driving Using Model Predictive Control
	Simulation in Simulink
	Controller Customization
	Integration with Automated Driving Toolbox

	Adaptive Cruise Control System Using Model Predictive Control
	Adaptive Cruise Control with Sensor Fusion
	Lane Keeping Assist System Using Model Predictive Control
	Lane Keeping Assist with Lane Detection
	Lane Following Control with Sensor Fusion and Lane Detection
	Highway Lane Following
	Highway Lane Change
	Automate Testing for Highway Lane Following
	Highway Lane Following with Intelligent Vehicles
	Parking Valet Using Nonlinear Model Predictive Control
	Parallel Parking Using Nonlinear Model Predictive Control
	Parallel Parking Using RRT Planner and MPC Tracking Controller
	Traffic Light Negotiation
	Traffic Light Negotiation with Unreal Engine Visualization

